Post-translational modifications (PTMs) chemically and physically alter the properties of proteins, including their folding, subcellular localization, stability, activity, and consequently their function. In spite o...Post-translational modifications (PTMs) chemically and physically alter the properties of proteins, including their folding, subcellular localization, stability, activity, and consequently their function. In spite of their relevance, studies on PTMs in plants are still limited. Small Ubiquitin-like Modifier (SUMO) modification regulates several biological processes by affecting protein-protein interactions, or changing the subcellular Iocalizations of the target proteins. Here, we describe a novel proteomic approach to identify SUMO targets that combines 2-D liquid chromatography, immunodetection, and mass spectrometry (MS) analyses. We have applied this approach to identify nuclear SUMO targets in response to heat shock. Using a bacterial SUMOylation system, we validated that some of the targets identified here are, in fact, labeled with SUMO1. Interestingly, we found that GIGANTEA (GI), a photoperiodic-pathway protein, is modified with SUMO in response to heat shock both in vitro and in vivo.展开更多
基金supported by the grants S-GEN-0191-2006 (CAM) and BIO2007-62517(MEC), CSD-2007-00057, and BIO2011-28184-C02-01 to J. C.P., and S-GEN-0191-2006 (CAM), BIO2007-65284 (MEC) and GEN2006-27787-E (MEC) to J. S. G. L. T. was supported by a postdoctoral contract (Comunidad de Madrid)
文摘Post-translational modifications (PTMs) chemically and physically alter the properties of proteins, including their folding, subcellular localization, stability, activity, and consequently their function. In spite of their relevance, studies on PTMs in plants are still limited. Small Ubiquitin-like Modifier (SUMO) modification regulates several biological processes by affecting protein-protein interactions, or changing the subcellular Iocalizations of the target proteins. Here, we describe a novel proteomic approach to identify SUMO targets that combines 2-D liquid chromatography, immunodetection, and mass spectrometry (MS) analyses. We have applied this approach to identify nuclear SUMO targets in response to heat shock. Using a bacterial SUMOylation system, we validated that some of the targets identified here are, in fact, labeled with SUMO1. Interestingly, we found that GIGANTEA (GI), a photoperiodic-pathway protein, is modified with SUMO in response to heat shock both in vitro and in vivo.