期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
MXene-Based Elastomer Mimetic StretchableSensors: Design, Properties, and Applications 被引量:1
1
作者 Poushali Das Parham Khoshbakht Marvi +5 位作者 Sayan Ganguly Xiaowu(Shirley)Tang Bo Wang Seshasai Srinivasan Amin Reza Rajabzadeh Andreas Rosenkranz 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期295-342,共48页
Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors... Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies. 展开更多
关键词 Flexible sensor 2D nanomaterials MXene Wearable and conductive Applications
下载PDF
Influence of structural depth of laser-patterned steel surfaces on the solid lubricity of carbon nanoparticle coatings 被引量:1
2
作者 Timothy MACLUCAS Lukas DAUT +5 位作者 Philipp GRÜTZMACHER Maria Agustina GUITAR Volker PRESSER Carsten GACHOT Sebastian SUAREZ Frank MÜCKLICH 《Friction》 SCIE EI CAS CSCD 2023年第7期1276-1291,共16页
Carbon nanoparticle coatings on laser-patterned stainless-steel surfaces present a solid lubrication system where the pattern's recessions act as lubricant-retaining reservoirs.This study investigates the influenc... Carbon nanoparticle coatings on laser-patterned stainless-steel surfaces present a solid lubrication system where the pattern's recessions act as lubricant-retaining reservoirs.This study investigates the influence of the structural depth of line patterns coated with multi-walled carbon nanotubes(CNTs)and carbon onions(COs)on their respective potential to reduce friction and wear.Direct laser interference patterning(DLIP)with a pulse duration of 12 ps is used to create line patterns with three different structural depths at a periodicity of 3.5μm on AISI 304 steel platelets.Subsequently,electrophoretic deposition(EPD)is applied to form homogeneous carbon nanoparticle coatings on the patterned platelets.Tribological ball-on-disc experiments are conducted on the as-described surfaces with an alumina counter body at a load of 100 mN.The results show that the shallower the coated structure,the lower its coefficient of friction(COF),regardless of the particle type.Thereby,with a minimum of just below 0.20,CNTs reach lower COF values than COs over most of the testing period.The resulting wear tracks are characterized by scanning electron microscopy,transmission electron microscopy,and energy-dispersive X-ray spectroscopy.During friction testing,the CNTs remain in contact,and the immediate proximity,whereas the CO coating is largely removed.Regardless of structural depth,no oxidation occurs on CNT-coated surfaces,whereas minor oxidation is detected on CO-coated wear tracks. 展开更多
关键词 solid lubricant coatings carbon nanotubes carbon onions direct laser interference patterning(DLIP)surface structuring electrophoretic deposition(EPD)
原文传递
Interplay between microstructural evolution and tribo-chemistry during dry sliding of metals 被引量:5
3
作者 Philipp GGRÜTZMACHER Sebastian RAMMACHER +3 位作者 Dominic RATHMANN Christian MOTZ FrankMÜCKLICH Sebastian SUAREZ 《Friction》 SCIE CSCD 2019年第6期637-650,共14页
Understanding the microstructural and tribo-chemical processes during tribological loading is of utmost importance to further improve the tribological behavior of metals. In this study, the friction, wear and tribo-ch... Understanding the microstructural and tribo-chemical processes during tribological loading is of utmost importance to further improve the tribological behavior of metals. In this study, the friction, wear and tribo-chemical behavior of Ni with different initial microstructures(nanocrystalline, bi-modal, coarse-grained) is investigated under dry sliding conditions. In particular, the interplay be-tween frictional response, microstructural evolution and tribo-oxidation is considered. Friction tests are carried out using ball-on-disk experiments with alumina balls as counter-bodies, varying the load between 1 and 5 N. The microstructural evolution as well as the chemical reactions beneath the samples’ surface is investigated by means of cross-sections. The samples with finer microstructures show a faster run-in and lower maximum values of the coefficient of friction(COF) which can be attributed to higher oxidation kinetics and a higher hardness. It is observed that with increasing sliding cycles, a stable oxide layer is formed. Furthermore, initially coarse-grained samples show grain refinement, whereas initially finer microstructures undergo grain coarsening converging towards the same superficial grain size after 2,000 sliding cycles. Consequently, the experimental evidence supports that, irrespective of the initial microstructure, after a certain deformation almost identical steady-state COF values for all samples are achieved. 展开更多
关键词 dry sliding microstructural analysis tribo‐oxidation WEAR
原文传递
Does laser surface texturing really have a negative impact on the fatigue lifetime of mechanical components? 被引量:4
4
作者 Chia-Jui HSU Andreas STRATMANN +3 位作者 Simon MEDINA Georg JACOBS Frank MÜCKLICH Carsten GACHOT 《Friction》 SCIE EI CAS CSCD 2021年第6期1766-1775,共10页
Laser surface texturing(LST)has been proven to improve the tribological performance of machine elements.The micro-scale patterns manufactured by LST may act as lubricant reservoirs,thus supplying oil when encountering... Laser surface texturing(LST)has been proven to improve the tribological performance of machine elements.The micro-scale patterns manufactured by LST may act as lubricant reservoirs,thus supplying oil when encountering insufficient lubrication.However,not many studies have investigated the use of LST in the boundary lubrication regime,likely due to concerns of higher contact stresses that can occur with the increasing surface roughness.This study aims to examine the influence of LST on the fatigue lifetime of thrust rolling bearings under boundary lubrication.A series of periodic patterns were produced on the thrust rolling bearings,using two geometrically different designs,namely cross and dimple patterns.Base oil ISO VG 100 mixed with 0.05 wt%P of zinc dialkyldithiophosphate(ZDDP)was supplied.The bearings with cross patterns reduce the wear loss by two orders of magnitude.The patterns not only retain lubricant in the textured pockets but also enhance the formation of an anti-wear tribofilm.The tribofilm generation may be improved by the higher contact stresses that occur when using the textured surface.Therefore,in contrast to the negative concerns,the ball bearings with cross patterns were instead found to increase the fatigue life by a factor of three. 展开更多
关键词 thrust rolling bearing laser surface texturing direct laser interference patterning zinc dialkyldithiophosphate(ZDDP) TRIBOFILM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部