期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Diagnosing Battery Degradation via Gas Analysis 被引量:1
1
作者 Michael Metzger Hubert A.Gasteiger 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第3期688-692,共5页
Interfacial reactions in lithium-ion batteries often involve gaseous reaction products.Mechanistic investigation of material degradation processes requires a technique to identify and quantify these gases in battery c... Interfacial reactions in lithium-ion batteries often involve gaseous reaction products.Mechanistic investigation of material degradation processes requires a technique to identify and quantify these gases in battery cells.Online electrochemical mass spectrometry(OEMS)is an operando gas analysis method that continuously samples the headspace of a custom battery cell.Real-time gas analysis by quantitative OEMS was used to create mechanistic understanding of battery degradation reactions,some of which will be highlight in this article. 展开更多
关键词 aging mechanisms BATTERIES energy storage gas analysis in situ and operando characterization
下载PDF
Electrochemical top-down synthesis of C-supported Pt nanoparticles with controllable shape and size:Mechanistic insights and application 被引量:2
2
作者 Batyr Garlyyev Sebastian Watzele +10 位作者 Johannes Fichtner Jan Michalicka Alexander Schokel Anatoliy Senyshyn Andrea Perego Dingjie Pan Hany A.El-Sayed Jan M.Macak Plamen Atanassov Iryna V.Zenyuk Aliaksandr S.Bandarenka 《Nano Research》 SCIE EI CSCD 2021年第8期2762-2769,共8页
In this work,we demonstrate the power of a simple top-down electrochemical erosion approach to obtain Pt nanoparticle with controlled shapes and sizes(in the range from-2 to-10 nm).Carbon supported nanoparticles with ... In this work,we demonstrate the power of a simple top-down electrochemical erosion approach to obtain Pt nanoparticle with controlled shapes and sizes(in the range from-2 to-10 nm).Carbon supported nanoparticles with narrow size distributions have been synthesized by applying an alternating voltage to macroscopic bulk platinum structures,such as disks or wires.Without using any surfactants,the size and shape of the particles can be changed by adjusting simple parameters such as the applied potential,frequency and electrolyte composition.For instance,application of a sinusoidal AC voltage with lower frequencies results in cubic nanoparticles;whereas higher frequencies lead to predominantly spherical nanoparticles.On the other hand,the amplitude of the,sinusoidal signal was found to affect the particle size;the lower the amplitude of the applied AC signal,the smaller the resulting particle size.Pt/C catalysts prepared by this approach showed 0.76 A/mg mass activity towards the oxygen reduction reaction which is-2 times higher than the state-of-the-art commercial Pt/C catalyst(0.42 A/mg)from Tanaka.In addition to this,we discussed the mechanistic insights about the nanoparticle formation pathways. 展开更多
关键词 electrochemical synthesis PLATINUM nanoparticles oxygen reduction reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部