The fundamental measurement of space gravitational wave detection is to monitor the relative motion between pairs of freely falling test masses using heterodyne laser interferometry to a precision of 10 pm. The masses...The fundamental measurement of space gravitational wave detection is to monitor the relative motion between pairs of freely falling test masses using heterodyne laser interferometry to a precision of 10 pm. The masses under test are millions of kilometers apart. The inter-spacecraft laser interferometry telescope deliver laser efficiently from one spacecraft to another. It is an important component of the gravitational wave detection observatory. It needs to meet the requirements of large compression ratio, high image quality and extraordinary stray light suppression ability. Based on the primary aberration theory, the method of the large compression ratio off-axis four-mirror optical system design is explored. After optimization, the system has an entrance pupil of 200 mm, compression ratio of 40 times, scientific field of view (FOV) of ±8 μrad. To facilitate suppressing the stray light and delivering the laser beam to the back-end scientific interferometers, the intermediate images and the real exit pupils are spatially available. Over the full FOV, the maximum root mean square (RMS) wavefront error is less than 0.007λ, PV value is less than 0.03λ (λ = 1064 nm). The image quality is approached to the diffraction-limit. The TTL noise caused by the wavefront error of the telescope is analyzed. The TTL noise in the image space of 300 μrad range is less than 1 × 10-10 m whose slope is lower than 0.6 μm/rad, which is under the noise budget of the laser interferometer space antenna (LISA), satisfying the requirements of space gravitational wave detection.展开更多
Removal of X-ray-induced carbon contamination on beamline optics was studied using radio-frequency plasma with an argon/hydrogen(Ar/H_2) mixture. Experiments demonstrated that the carbon removal rate with Ar/H_2 plasm...Removal of X-ray-induced carbon contamination on beamline optics was studied using radio-frequency plasma with an argon/hydrogen(Ar/H_2) mixture. Experiments demonstrated that the carbon removal rate with Ar/H_2 plasma was higher than that with pure hydrogen or argon. The possible mechanism for this enhanced removal was discussed. The key working parameters for Ar/H_2 plasma removal were determined, including the optimal vacuum pressure, gas mixing ratio, and source power. The optimal process was performed on a carbon-coated multilayer, and the reflectivity was recovered.展开更多
We fabricate and measure a multilayer-coated ion-beam-etched laminar grating for the extreme ultraviolet wavelength region. The fabrication process is carefully controlled so that the grating groove and multilayercoat...We fabricate and measure a multilayer-coated ion-beam-etched laminar grating for the extreme ultraviolet wavelength region. The fabrication process is carefully controlled so that the grating groove and multilayercoating parameters well meet the design targets. At an incident angle of 10°, the peak diffraction efficiency of the +1st order is 20.6% at 14.56 nm and that of the -1st order is 22.1% at 14.65 nm, both close to the theoretical limits.展开更多
Inserting hexagonal boron nitride(hBN)as barrier layers into bilayer transition metal dichalcogenides heterointerface has been proved an efficient method to improve two dimensional tunneling optoelectronic device perf...Inserting hexagonal boron nitride(hBN)as barrier layers into bilayer transition metal dichalcogenides heterointerface has been proved an efficient method to improve two dimensional tunneling optoelectronic device performance.Nevertheless,the physical picture of interlayer coupling effect during incorporation of monolayer(1L-)hBN is not explicit yet.In this article,spectroscopic ellipsometry was used to experimentally obtain the broadband excitonic and critical point properties of WS_(2)/MoS_(2)and WS_(2)/hBN/MoS_(2)van der Waals heterostructures.We find that 1L-hBN can only slightly block the interlayer electron transfer from WS_(2)layer to MoS_(2)layer.Moreover,insertion of 1L-hBN weakens the interlayer coupling effect by releasing quantum confinement and reducing efficient dielectric screening.Consequently,the exciton binding energies in WS_(2)/hBN/MoS_(2)heterostructures blueshift comparing to those in WS_(2)/MoS_(2)heterostructures.In this exciton binding energies tuning process,the reducing dielectric screening effect plays a leading role.In the meantime,the quasi-particle(QP)bandgap remains unchanged before and after 1L-hBN insertion,which is attributed to released quantum confinement and decreased dielectric screening effects canceling each other.Unchanged QP bandgap as along with blueshift exciton binding energies lead to the redshift exciton transition energies in WS_(2)/hBN/MoS_(2)heterostructures.展开更多
In order to realize the tunable performance of a frequency selective surface (FSS), a new unit cell is designed in this paper by properly adding two metal shorts to the ring slot. Based on the spectral-domain method...In order to realize the tunable performance of a frequency selective surface (FSS), a new unit cell is designed in this paper by properly adding two metal shorts to the ring slot. Based on the spectral-domain method, the frequency responses of the FSS structure with two shorts per slot ring are analysed for both the horizontal and the vertical polarizations at the normal incidence. It is demonstrated that the presence of the metal shorts does not affect the resonant frequency of the horizontally polarized wave but doubles the resonant frequency of the vertically polarized wave. Therefore based on the analysis of the novel transmission properties, a new approach to adjusting the resonant frequency by rotating the FSS screen 90° is presented in this paper.展开更多
A convex aspheric surface using a computer-generated hologram (CGH) test plate fabricated with novel techniques and equipment is tested. However, the measurement result is not verified via comparison with other meth...A convex aspheric surface using a computer-generated hologram (CGH) test plate fabricated with novel techniques and equipment is tested. However, the measurement result is not verified via comparison with other methods. To verify the accuracy of the measurement, a perfect sphere surface is measured by the following. The measurement result is quantified into four parts: the figure error from the tested spherical surface; the figure error from the reference spherical surface; the error from the hologram; and the adjustment error from misalignment. The measurement result, removed from the later three errors, shows agreement to 4-nm RMS with the test by Zygo interfermeter of the same surface. Analysis of the CGH test showed the overall accuracy of the 4-nm RMS, with 3.9 nm from the test plate figure, 0.5 nm from the hologram, and 0.74 nm from other sources, such as random vibration, various second order effects, and so on. Thus, the measurement accuracy using the proposed CGH could be very high. CGH can therefore be used to measure aspheric surfaces accurately.展开更多
文摘The fundamental measurement of space gravitational wave detection is to monitor the relative motion between pairs of freely falling test masses using heterodyne laser interferometry to a precision of 10 pm. The masses under test are millions of kilometers apart. The inter-spacecraft laser interferometry telescope deliver laser efficiently from one spacecraft to another. It is an important component of the gravitational wave detection observatory. It needs to meet the requirements of large compression ratio, high image quality and extraordinary stray light suppression ability. Based on the primary aberration theory, the method of the large compression ratio off-axis four-mirror optical system design is explored. After optimization, the system has an entrance pupil of 200 mm, compression ratio of 40 times, scientific field of view (FOV) of ±8 μrad. To facilitate suppressing the stray light and delivering the laser beam to the back-end scientific interferometers, the intermediate images and the real exit pupils are spatially available. Over the full FOV, the maximum root mean square (RMS) wavefront error is less than 0.007λ, PV value is less than 0.03λ (λ = 1064 nm). The image quality is approached to the diffraction-limit. The TTL noise caused by the wavefront error of the telescope is analyzed. The TTL noise in the image space of 300 μrad range is less than 1 × 10-10 m whose slope is lower than 0.6 μm/rad, which is under the noise budget of the laser interferometer space antenna (LISA), satisfying the requirements of space gravitational wave detection.
基金supported by the National Nature Science Foundation of China(No.61404139)the National Science and Technology Major Project(No.2012ZX0270 2001-005)the State Key Laboratory of Applied Optics
文摘Removal of X-ray-induced carbon contamination on beamline optics was studied using radio-frequency plasma with an argon/hydrogen(Ar/H_2) mixture. Experiments demonstrated that the carbon removal rate with Ar/H_2 plasma was higher than that with pure hydrogen or argon. The possible mechanism for this enhanced removal was discussed. The key working parameters for Ar/H_2 plasma removal were determined, including the optimal vacuum pressure, gas mixing ratio, and source power. The optimal process was performed on a carbon-coated multilayer, and the reflectivity was recovered.
基金supported by the National Natural Science Foundation of China (No. 60678034) an internal fund of the State Key Laboratory of Applied Optics of China
文摘We fabricate and measure a multilayer-coated ion-beam-etched laminar grating for the extreme ultraviolet wavelength region. The fabrication process is carefully controlled so that the grating groove and multilayercoating parameters well meet the design targets. At an incident angle of 10°, the peak diffraction efficiency of the +1st order is 20.6% at 14.56 nm and that of the -1st order is 22.1% at 14.65 nm, both close to the theoretical limits.
基金the National Natural Science Foundation of China(Nos.11674062,61775042,and 61774040)the Fudan University-CIOMP Joint Fund(Nos.FC2019-004,FC2019-006,and FC2018-002)+2 种基金the National Key R&D Program of China(No.2018YFA0703700)the Shanghai Municipal Science and Technology Commission(No.18JC1410300)the Shanghai Municipal Natural Science Foundation(No.20ZR1403200).
文摘Inserting hexagonal boron nitride(hBN)as barrier layers into bilayer transition metal dichalcogenides heterointerface has been proved an efficient method to improve two dimensional tunneling optoelectronic device performance.Nevertheless,the physical picture of interlayer coupling effect during incorporation of monolayer(1L-)hBN is not explicit yet.In this article,spectroscopic ellipsometry was used to experimentally obtain the broadband excitonic and critical point properties of WS_(2)/MoS_(2)and WS_(2)/hBN/MoS_(2)van der Waals heterostructures.We find that 1L-hBN can only slightly block the interlayer electron transfer from WS_(2)layer to MoS_(2)layer.Moreover,insertion of 1L-hBN weakens the interlayer coupling effect by releasing quantum confinement and reducing efficient dielectric screening.Consequently,the exciton binding energies in WS_(2)/hBN/MoS_(2)heterostructures blueshift comparing to those in WS_(2)/MoS_(2)heterostructures.In this exciton binding energies tuning process,the reducing dielectric screening effect plays a leading role.In the meantime,the quasi-particle(QP)bandgap remains unchanged before and after 1L-hBN insertion,which is attributed to released quantum confinement and decreased dielectric screening effects canceling each other.Unchanged QP bandgap as along with blueshift exciton binding energies lead to the redshift exciton transition energies in WS_(2)/hBN/MoS_(2)heterostructures.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61172012)
文摘In order to realize the tunable performance of a frequency selective surface (FSS), a new unit cell is designed in this paper by properly adding two metal shorts to the ring slot. Based on the spectral-domain method, the frequency responses of the FSS structure with two shorts per slot ring are analysed for both the horizontal and the vertical polarizations at the normal incidence. It is demonstrated that the presence of the metal shorts does not affect the resonant frequency of the horizontally polarized wave but doubles the resonant frequency of the vertically polarized wave. Therefore based on the analysis of the novel transmission properties, a new approach to adjusting the resonant frequency by rotating the FSS screen 90° is presented in this paper.
基金supported by the National Natural Science Foundation of China under Grand No.61137001
文摘A convex aspheric surface using a computer-generated hologram (CGH) test plate fabricated with novel techniques and equipment is tested. However, the measurement result is not verified via comparison with other methods. To verify the accuracy of the measurement, a perfect sphere surface is measured by the following. The measurement result is quantified into four parts: the figure error from the tested spherical surface; the figure error from the reference spherical surface; the error from the hologram; and the adjustment error from misalignment. The measurement result, removed from the later three errors, shows agreement to 4-nm RMS with the test by Zygo interfermeter of the same surface. Analysis of the CGH test showed the overall accuracy of the 4-nm RMS, with 3.9 nm from the test plate figure, 0.5 nm from the hologram, and 0.74 nm from other sources, such as random vibration, various second order effects, and so on. Thus, the measurement accuracy using the proposed CGH could be very high. CGH can therefore be used to measure aspheric surfaces accurately.