The spread and removal of pollution sources,namely,cough-released droplets in three different areas(front,middle,and rear areas)of a fully-loaded passenger car in a high-speed train under different fresh air flow volu...The spread and removal of pollution sources,namely,cough-released droplets in three different areas(front,middle,and rear areas)of a fully-loaded passenger car in a high-speed train under different fresh air flow volume were studied using computational fluid dynamics(CFD)method.In addition,the structure of indoor flow fields was also analysed.The results show that the large eddies are more stable and flow faster in the air supply under Mode 2(fresh air volume:2200m3/h)compared to Mode 1(fresh air volume:1100m3/h).By analysing the spreading process of droplets sprayed at different locations in the passenger car and with different particle sizes,the removal trends for droplets are found to be similar under the two air supply modes.However,when increasing the fresh air flow volume,the droplets in the middle and front areas of the passenger car are removed faster.When the droplets had dispersed for 60s,Mode 2 exhibited a removal rate approximately 1%–3%higher than Mode 1 for small and medium-sized droplets with diameters of 10 and 50μm.While those in the rear area,the situation is reversed,with Mode 1 slightly surpassing Mode 2 by 1%–3%.For large droplets with a diameter of 100μm,both modes achieved a removal rate of over 96%in all three regions at the 60 s.The results can provide guidance for air supply modes of passenger cars of high-speed trains,thus suppressing the spread of virus-carrying droplets and reducing the risk of viral infection among passengers.展开更多
In this work,the flow surrounding the train was obtained using a detached eddy simulation(DES)for slipstream analysis.Two different streamlined nose lengths were investigated:a short nose(4 m)and a long nose(9 m).The ...In this work,the flow surrounding the train was obtained using a detached eddy simulation(DES)for slipstream analysis.Two different streamlined nose lengths were investigated:a short nose(4 m)and a long nose(9 m).The time-average slipstream velocity and the time-average slipstream pressure along the car bodies were compared and explained in detail.In addition to the time-averaged values,the _(max)imum velocities and the pressure peak-to-peak values around the two trains were analyzed.The result showed that the nose length affected the slipstream velocity along the entire train length at the lower and upper regions of the side of the train.However,no significant effect was recognized at the middle height of the train along its length,except in the nose region.Moreover,within the train’s side regions(y=2.0-2.5 m and z=2-4 m)and(y=2.5-3.5 m and z=0.2-0.7 m),the ratio of slipstream velocity U_(max) between the short and long nose trains was notably higher.This occurrence also manifested at the train’s upper section,specifically where y=0-2.5 m and z=4.2-5.0 m.Similarly,regarding the ratio of _(max)imum pressure peak-to-peak values Cp-p_(max),significant regions were observed at the train’s side(y=1.8-2.6 m and z=1-4 m)and above the train(y=0-2 m and z=3.9-4.8 m).展开更多
This paper introduces the application of new automatic welding technologies in railway vehicles manufacturing industry, and presents the state of art of advanced friction stir welding technology, semi-penetration lase...This paper introduces the application of new automatic welding technologies in railway vehicles manufacturing industry, and presents the state of art of advanced friction stir welding technology, semi-penetration laser welding technology and laser-arc hybrid welding technology in manufacturing aluminum alloy body shell, stainless steel body shell and bogie. This paper also analyzes the application and development trend of three welding technologies in the future.展开更多
Rotation resistance coefficient is an important operating parameter for vehicle bogies, which influences the dynamic behavior of vehicles directly. A research on the rotation resistance coefficient of type A vehicle m...Rotation resistance coefficient is an important operating parameter for vehicle bogies, which influences the dynamic behavior of vehicles directly. A research on the rotation resistance coefficient of type A vehicle motor bogies was conducted by means of theoretical calculation, dynamic simulation, test certification, and so on. Result of the simulation analysis shows that the rotation resistance coefficient relates to air springs stiffness and negotiated curve radii, and it varies proportionally with the change of air springs horizontal stiffness. The greater the rotation angle is, the greater the factor becomes. The certifications made under the operating conditions(e.g., different air spring status, different rotation speeds) indicate that the rotation resistance coefficient increases with the increase of the rotation speed. The anti-yaw dampers can contribute to the rotation resistance torque acted on bogie, and the greater the rotation speeds are, the greater the torque generated by the anti-yaw dampers is. The results suggest that the theoretical analysis and dynamics simulation are in accordance with the results from the bogie bench tests, which meet the requirements in EN14363 and the indicators in vehicles safe operation.展开更多
Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ...Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling.展开更多
The cowcatcher is one of the unique devices at the front end of the train, which can remove obstacles on the track by crashing before the vehicle body to ensure the safety of the train. When a collision accident happe...The cowcatcher is one of the unique devices at the front end of the train, which can remove obstacles on the track by crashing before the vehicle body to ensure the safety of the train. When a collision accident happens, the cowcatcher serves as the first energy-absorbing structure to dissipate and guide the collision energy. The design of the existing cowcatcher of multiple units generally focuses on the good ability to remove obstacles, while the secondary function, the crashworthiness of orderly deformation under collision, still needs further research. In this study, a finite element model of structural static load and collision analysis was established under standard EN 15227, with the cowcatcher for 160 km/h train as the prototype. Then the solution and simulation process was accomplished under the environment of ANSYS and LS-DYNA. The analysis results showed that the structural static strength of the current cowcatcher met the requirements of the standard EN 15227, and the longitudinal stiffness was evenly distributed. When removing the obstacles with low mass, the impact force was small and the structure would not produce obvious deformation;when removing the obstacles with large mass, the impact force was large and the shear fracture might occur at the connection of the cowcatcher.展开更多
This paper presents a novel intelligent and effective method based on an improved ant colony optimization(ACO)algorithm to solve the multi-objective ship weather routing optimization problem,considering the navigation...This paper presents a novel intelligent and effective method based on an improved ant colony optimization(ACO)algorithm to solve the multi-objective ship weather routing optimization problem,considering the navigation safety,fuel consumption,and sailing time.Here the improvement of the ACO algorithm is mainly reflected in two aspects.First,to make the classical ACO algorithm more suitable for long-distance ship weather routing and plan a smoother route,the basic parameters of the algorithm are improved,and new control factors are introduced.Second,to improve the situation of too few Pareto non-dominated solutions generated by the algorithm for solving multi-objective problems,the related operations of crossover,recombination,and mutation in the genetic algorithm are introduced in the improved ACO algorithm.The final simulation results prove the effectiveness of the improved algorithm in solving multi-objective weather routing optimization problems.In addition,the black-box model method was used to study the ship fuel consumption during a voyage;the model was constructed based on an artificial neural network.The parameters of the neural network model were refined repeatedly through the historical navigation data of the test ship,and then the trained black-box model was used to predict the future fuel consumption of the test ship.Compared with other fuel consumption calculation methods,the black-box model method showed higher accuracy and applicability.展开更多
Product storage policy, single picking volume and picking routing are the three factors of vital importance that affect the efficiency of a crane to pick goods in automated storage and retrieval systems(AS/RS). Compar...Product storage policy, single picking volume and picking routing are the three factors of vital importance that affect the efficiency of a crane to pick goods in automated storage and retrieval systems(AS/RS). Comparative experiments on picking efficiency were conducted targeting picking operation with order of 1 to 20. Based on dedicated and random storage policies, 4 picking methods of patching-based, S-type, return-type and optimized-type routes were used and compared in the experiments. The results show that either the dedicated policy or the random policy was applied, crane worked most efficiently with optimizedtype route, followed by S-type path, patching-based path, and return-type path. When the number of orders in a single picking is larger(more than 5), the random storage policy is preferable to the dedicated policy.展开更多
Microstructures and mechanical properties of transient liquid phase (TLP) bonded magnesium metal matrix composite ( MMC) joints using copper interlayer have been investigated. With an increase of bonding times fro...Microstructures and mechanical properties of transient liquid phase (TLP) bonded magnesium metal matrix composite ( MMC) joints using copper interlayer have been investigated. With an increase of bonding times from 5 min to 50 min at bonding temperature of 510 ℃ , the average concentration of copper in the bonded zone decreased, the microstructure in the zone changed from Cu, α-Mg and CuMg2 to α-Mg, CuMg2 and TiC, and mechanical properties of the joint increased. The shear strength of the joint bonded at 510 ℃ for 50 min reached 64 MPa due to the metallurgical bonding of the joint and improving its homogeneity of composition and microstructure. It is favorable to increase the bonding time for improving mechanical properties of TLP bonded magnesium MMC joint.展开更多
Being an exclusive construction material for lightweight rail vehicles,protection from pitting corrosion in harsh marine atmospheric environment in high humidity and Cl-ion concentration is critical for austenitic SUS...Being an exclusive construction material for lightweight rail vehicles,protection from pitting corrosion in harsh marine atmospheric environment in high humidity and Cl-ion concentration is critical for austenitic SUS 301L stainless steel(SS),especially when it inevitably suff ers from mechanical damages during post disposals.Herein,an innovative dry passivation method for austenitic SUS 301L SS was established in a closed air atmosphere at low temperature and constant pressure.The process parameters were optimized,and the passivation mechanism was explained using polarization curve,electrochemical impedance spectroscopy(EIS),X-ray photoelectron spectroscopy(XPS),and contact angle measurement.The pitting corrosion susceptibility of the passive fi lm prepared in a closed air chamber under 1.0×10^(5) Pa at 80℃ for 80 min was evaluated in 3.5%NaCl solution and exhibited higher pitting potential and corrosion resistance,lower passivity-maintaining current density,and wettability when compared with conventional nitric acid treatment.Besides,dry passivation facilitated the repairing of the surface structural defect itself and the post-processing damage,similar to the accelerated aging of fi lm.The decrease in oxygen concentration and convection-diff usion strengthened the preferential chromium oxidation to form a compact chromium-rich passive fi lm to resist the aggression of Cl-ion.展开更多
The dissipation function in turbulent plane Poiseuille flows(PPFs) and plane Couette flows(PCFs) subject to spanwise rotations is analyzed. It is found that, in the PCFs without system rotations, the mean part is cons...The dissipation function in turbulent plane Poiseuille flows(PPFs) and plane Couette flows(PCFs) subject to spanwise rotations is analyzed. It is found that, in the PCFs without system rotations, the mean part is constant while the fluctuation part follows a logarithmic law, resulting in a similar logarithmic skin friction law as PPFs.However, if the flow system rotates in the spanwise direction, no obvious dependence on the rotation number can be evaluated. In the PPFs with rotations, the dissipation function shows an increase with the rotation number, while in the PCFs with rotations,when the rotation number increases, the dissipation function first decreases and then increases.展开更多
Contagious pathogens like COVID-19 transmitted via respiratory droplets spread effortlessly in the passenger compartments of transport,significantly jeopardizing passengers’safety when taking public transportation.To...Contagious pathogens like COVID-19 transmitted via respiratory droplets spread effortlessly in the passenger compartments of transport,significantly jeopardizing passengers’safety when taking public transportation.To date,studies on the fundamental theories of airborne droplet transmission and the engineering application of decontamination techniques are insufficient for the prevention and control of pathogens transmitting in the compartments of passenger transport.It is essential to systematically investigate the control approaches to restrain pathogens from transmitting in passenger compartments.Herein,a theoretical framework for calculating the transmission of pathogens in a complex compartment environment was proposed,and experimental platforms that satisfy the Biosafety Level-2 Laboratory safety level for compartment environment simulations were built based on a set of real train cabins.On these bases,numerical investigations on the motion of pathogen-laden droplets were conducted,and decontamination techniques were examined experimentally.Thereby,control measures on the pathogen transmission and pathogen decontamination schemes were proposed.Moreover,highly efficient decontamination devices were developed,and coping strategies for epidemic emergencies were devised.The outcomes provide theoretical and technical support for developing the next generation of transportation and the prevention and control measures cooperatively considering regular and pandemic times.展开更多
This study proposes a method for measuring the operational current of high temperature superconducting(HTS)non‐insulation(NI)closed‐loop coils,which operate in the steady persistent‐current‐mode(PCM).HTS NI closed...This study proposes a method for measuring the operational current of high temperature superconducting(HTS)non‐insulation(NI)closed‐loop coils,which operate in the steady persistent‐current‐mode(PCM).HTS NI closed‐loop coils are promising for many easily‐quenching direct‐current(DC)applications,where their performance is determined by magnetomotive forces,total number of turns,and dimensions.As the primary interface parameter in an application system,the operational current must be accurately and rapidly measured.Generally,this is achieved by dividing the measured magnetic field by the coil constant.However,even if the influence of the screening current induced field(SCIF)is not considered,existing methods for the coil constant may be disturbed by the performance and location of Hall sensors,or experience a long measuring period.Therefore,a relatively accurate and fast method is proposed in this study,which is based on adjusting the output current of the adjustable power supply and monitoring the coil voltage as an indicator.The proposed method was validated through experiments and simulations using an equivalent circuit model coupled with a finite element method(FEM)model,and its current accuracy can be equivalent to the resolution of the employed power supply.It was demonstrated that this method reduced the requirements for Hall sensor’s performance and location,and has a more reliable accuracy in contrast to the simulation method.Compared to the experimentally conventional method,the proposed method presents a significantly faster speed.The impact of the SCIF was considered and proven to be negligible for the tested pancake coils.Even for coils whose coil constant vibrates owing to the SCIF,this method can be adapted to directly measure various operational currents.Furthermore,it was demonstrated that the measurement error can be influenced by the current discrepancy among turns when the coil is not in the steady PCM,and a procedure for reducing this error was proposed.展开更多
Predicting the life of Ni-Cd battery for electric multiple units(EMU)can not only improve the safety and reliability of battery,but also reduce the operating costs of EMU.For this reason,a life prediction method based...Predicting the life of Ni-Cd battery for electric multiple units(EMU)can not only improve the safety and reliability of battery,but also reduce the operating costs of EMU.For this reason,a life prediction method based on linear Wiener process is proposed,which is suitable for both monotonic and non-monotonic degraded systems with accurate results.Firstly,a unary linear Wiener degradation model is established,and the parameters of the model are estimated by using the expectation-maximization algorithm(EM).With the established model,the remaining useful life(RUL)of Ni Cd battery and its distribution are obtained.Then based on the unary Wiener process degradation model,the correlation between capacity and energy is analyzed through Copula function to build a binary linear Wiener degradation model,where its parameters are estimated using Markov Chain Monte Carlo(MCMC)method.Finally,according to the binary Wiener process model,the battery RUL and its distribution are acquired.The experimental results show that the binary linear Wiener degradation model based on capacity and energy possesses higher accuracy than the unary linear wiener process degradation model.展开更多
1.A worldwide history of high-speed trains High-speed railway(HSR)is defined by the International Union of Railways(UIC)as new lines with design speeds above 250 kmh1 and upgraded existing lines with speeds of up to 2...1.A worldwide history of high-speed trains High-speed railway(HSR)is defined by the International Union of Railways(UIC)as new lines with design speeds above 250 kmh1 and upgraded existing lines with speeds of up to 200 kmh1[1].In China,HSR is defined as new passenger-dedicated lines designed for electric multiple unit(EMU)trains running at a speed of 250 kmh1 or above(actual or reserved),with an initial operation speed not lower than 200 kmh1[2].The worldwide development of HSRs and high-speed EMUs can be roughly divided into three stages:initial operation,line platform expansion,and rapid development.展开更多
The application status of friction stir welding technology is introduced,and the application research of advanced FSW technology in the manufacture of high-speed electric multiple unit aluminum alloy body is analyzed,...The application status of friction stir welding technology is introduced,and the application research of advanced FSW technology in the manufacture of high-speed electric multiple unit aluminum alloy body is analyzed,including the application of traditional friction stir welding technology to a combination of a lap joint and butt joint,and butt joint of large thick plate by both sides process,also introduces bobbin-tool friction stir welding to a butt joint and three-dimensional space curved friction stir welding to T-joint. At the same time the future development trend of new FSW technology derived from traditional FSW technology in rail vehicle manufacturing industry is put forward. As the fast developing of critical technology used on railway vehicles,quick applying advanced welding technology will affect products quality,manufacturing cost and production cycle time directly,and it certainly will be one of the approaches to develop markets by all the railway vehicles manufacturing enterprises.展开更多
The transient pressures induced by trains passing through a tunnel and their impact on the structural safety of the tunnel lining were numerically analyzed.The results show that the pressure change increases rapidly a...The transient pressures induced by trains passing through a tunnel and their impact on the structural safety of the tunnel lining were numerically analyzed.The results show that the pressure change increases rapidly along the tunnel length,and the maximum value is observed at around 200 m from the entrance,while the maximum pressure amplitude is detected at 250 m from the entrance when two trains meeting in a double-track tunnel.The maximum peak pressure on the tunnel induced by a train passing through a 70 m^(2) single-track tunnel,100 m^(2) double-track tunnel and two trains meeting in the 100 m^(2) double-track tunnel at 350 km/h,are−4544 Pa,−3137 Pa and−5909 Pa,respectively.The aerodynamic pressure induced axial forces acting on the tunnel lining are only 8%,5%and 9%,respectively,of those generated by the earth pressure.It seems that the aerodynamic loads exert little underlying influence on the static strength safety of the tunnel lining providing that the existing cracks and defects are not considered.展开更多
Under the spirit of sustainable development, ‘lightweight’ has been gradually included into the vehicle design criterion by many manufacturers and used in automobile production. Following this trend, domestic wheel ...Under the spirit of sustainable development, ‘lightweight’ has been gradually included into the vehicle design criterion by many manufacturers and used in automobile production. Following this trend, domestic wheel suppliers also begin to study the technology of lightweight wheel. One way to achieve this goal is improving strength grade of the steel and optimizing the structure design in the field of steel wheels. But there are a few problems in flash butt welding process in the application of high strength steel, leading to high rejection rates. SW400 steel is a special high strength wheel steel developed by Benxi Steel. Taking SW400 steel as the research material, this article studys the feasibility of improving the properties of rim flash butt welded joints by adding preheating process.展开更多
基金the National Natural Science Foundation of China(Grant Number 52078199)the China National Railway Group Limited(Grant Number P2021J036)+1 种基金the Hunan Young Talents Program(Grant Number 2020RC3019)the Young Elite Scientists Sponsorship Program by CAST(2020QNRC001).
文摘The spread and removal of pollution sources,namely,cough-released droplets in three different areas(front,middle,and rear areas)of a fully-loaded passenger car in a high-speed train under different fresh air flow volume were studied using computational fluid dynamics(CFD)method.In addition,the structure of indoor flow fields was also analysed.The results show that the large eddies are more stable and flow faster in the air supply under Mode 2(fresh air volume:2200m3/h)compared to Mode 1(fresh air volume:1100m3/h).By analysing the spreading process of droplets sprayed at different locations in the passenger car and with different particle sizes,the removal trends for droplets are found to be similar under the two air supply modes.However,when increasing the fresh air flow volume,the droplets in the middle and front areas of the passenger car are removed faster.When the droplets had dispersed for 60s,Mode 2 exhibited a removal rate approximately 1%–3%higher than Mode 1 for small and medium-sized droplets with diameters of 10 and 50μm.While those in the rear area,the situation is reversed,with Mode 1 slightly surpassing Mode 2 by 1%–3%.For large droplets with a diameter of 100μm,both modes achieved a removal rate of over 96%in all three regions at the 60 s.The results can provide guidance for air supply modes of passenger cars of high-speed trains,thus suppressing the spread of virus-carrying droplets and reducing the risk of viral infection among passengers.
基金Project(52202426)supported by the National Natural Science Foundation of ChinaProjects(15205723,15226424)supported by the Research Grants Council of the Hong Kong Special Administrative Region(SAR),China+1 种基金Project(K2021J041)supported by the Technology Research and Development Program of China RailwayProject(1-BD23)supported by The Hong Kong Polytechnic University,China。
文摘In this work,the flow surrounding the train was obtained using a detached eddy simulation(DES)for slipstream analysis.Two different streamlined nose lengths were investigated:a short nose(4 m)and a long nose(9 m).The time-average slipstream velocity and the time-average slipstream pressure along the car bodies were compared and explained in detail.In addition to the time-averaged values,the _(max)imum velocities and the pressure peak-to-peak values around the two trains were analyzed.The result showed that the nose length affected the slipstream velocity along the entire train length at the lower and upper regions of the side of the train.However,no significant effect was recognized at the middle height of the train along its length,except in the nose region.Moreover,within the train’s side regions(y=2.0-2.5 m and z=2-4 m)and(y=2.5-3.5 m and z=0.2-0.7 m),the ratio of slipstream velocity U_(max) between the short and long nose trains was notably higher.This occurrence also manifested at the train’s upper section,specifically where y=0-2.5 m and z=4.2-5.0 m.Similarly,regarding the ratio of _(max)imum pressure peak-to-peak values Cp-p_(max),significant regions were observed at the train’s side(y=1.8-2.6 m and z=1-4 m)and above the train(y=0-2 m and z=3.9-4.8 m).
文摘This paper introduces the application of new automatic welding technologies in railway vehicles manufacturing industry, and presents the state of art of advanced friction stir welding technology, semi-penetration laser welding technology and laser-arc hybrid welding technology in manufacturing aluminum alloy body shell, stainless steel body shell and bogie. This paper also analyzes the application and development trend of three welding technologies in the future.
基金Sponsored by the Study on Rotation Resistance Coefficient of Motor Bogie for Type A Railway Vehicle CRRC Changchun Railway Vehicles Co.,Ltd.,China
文摘Rotation resistance coefficient is an important operating parameter for vehicle bogies, which influences the dynamic behavior of vehicles directly. A research on the rotation resistance coefficient of type A vehicle motor bogies was conducted by means of theoretical calculation, dynamic simulation, test certification, and so on. Result of the simulation analysis shows that the rotation resistance coefficient relates to air springs stiffness and negotiated curve radii, and it varies proportionally with the change of air springs horizontal stiffness. The greater the rotation angle is, the greater the factor becomes. The certifications made under the operating conditions(e.g., different air spring status, different rotation speeds) indicate that the rotation resistance coefficient increases with the increase of the rotation speed. The anti-yaw dampers can contribute to the rotation resistance torque acted on bogie, and the greater the rotation speeds are, the greater the torque generated by the anti-yaw dampers is. The results suggest that the theoretical analysis and dynamics simulation are in accordance with the results from the bogie bench tests, which meet the requirements in EN14363 and the indicators in vehicles safe operation.
基金This work was supported by the National Natural Science Foundation of China(No.52172409)Sichuan Outstanding Youth Fund(No.2022JDJQ0025).
文摘Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling.
基金supports by the National Natural Science Foundation of China(Grant No.52172353 and 52202431).
文摘The cowcatcher is one of the unique devices at the front end of the train, which can remove obstacles on the track by crashing before the vehicle body to ensure the safety of the train. When a collision accident happens, the cowcatcher serves as the first energy-absorbing structure to dissipate and guide the collision energy. The design of the existing cowcatcher of multiple units generally focuses on the good ability to remove obstacles, while the secondary function, the crashworthiness of orderly deformation under collision, still needs further research. In this study, a finite element model of structural static load and collision analysis was established under standard EN 15227, with the cowcatcher for 160 km/h train as the prototype. Then the solution and simulation process was accomplished under the environment of ANSYS and LS-DYNA. The analysis results showed that the structural static strength of the current cowcatcher met the requirements of the standard EN 15227, and the longitudinal stiffness was evenly distributed. When removing the obstacles with low mass, the impact force was small and the structure would not produce obvious deformation;when removing the obstacles with large mass, the impact force was large and the shear fracture might occur at the connection of the cowcatcher.
基金Projects(2020YFA0710903-C,2020YFA0710904-02)supported by the National Key R&D Program of ChinaProjects(52078199,52322215,52388102,U2368213)supported by the National Natural Science Foundation of China+1 种基金Project(P2021J036)supported by the China National Railway Group LimitedProject(2020QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST,China。
基金funded by the Russian Foundation for Basic Research(RFBR)(No.17-07-00361a)。
文摘This paper presents a novel intelligent and effective method based on an improved ant colony optimization(ACO)algorithm to solve the multi-objective ship weather routing optimization problem,considering the navigation safety,fuel consumption,and sailing time.Here the improvement of the ACO algorithm is mainly reflected in two aspects.First,to make the classical ACO algorithm more suitable for long-distance ship weather routing and plan a smoother route,the basic parameters of the algorithm are improved,and new control factors are introduced.Second,to improve the situation of too few Pareto non-dominated solutions generated by the algorithm for solving multi-objective problems,the related operations of crossover,recombination,and mutation in the genetic algorithm are introduced in the improved ACO algorithm.The final simulation results prove the effectiveness of the improved algorithm in solving multi-objective weather routing optimization problems.In addition,the black-box model method was used to study the ship fuel consumption during a voyage;the model was constructed based on an artificial neural network.The parameters of the neural network model were refined repeatedly through the historical navigation data of the test ship,and then the trained black-box model was used to predict the future fuel consumption of the test ship.Compared with other fuel consumption calculation methods,the black-box model method showed higher accuracy and applicability.
基金Funded by National Social Science Foundation of China(16CGL018)the Soft Science Research Funds for Chengdu Science and Technology Project(2015-RK00-00206-ZF)the National United Engineering Laboratory of Integrated and Intelligent Transportation,Southwest Jiaotong University,China
文摘Product storage policy, single picking volume and picking routing are the three factors of vital importance that affect the efficiency of a crane to pick goods in automated storage and retrieval systems(AS/RS). Comparative experiments on picking efficiency were conducted targeting picking operation with order of 1 to 20. Based on dedicated and random storage policies, 4 picking methods of patching-based, S-type, return-type and optimized-type routes were used and compared in the experiments. The results show that either the dedicated policy or the random policy was applied, crane worked most efficiently with optimizedtype route, followed by S-type path, patching-based path, and return-type path. When the number of orders in a single picking is larger(more than 5), the random storage policy is preferable to the dedicated policy.
文摘Microstructures and mechanical properties of transient liquid phase (TLP) bonded magnesium metal matrix composite ( MMC) joints using copper interlayer have been investigated. With an increase of bonding times from 5 min to 50 min at bonding temperature of 510 ℃ , the average concentration of copper in the bonded zone decreased, the microstructure in the zone changed from Cu, α-Mg and CuMg2 to α-Mg, CuMg2 and TiC, and mechanical properties of the joint increased. The shear strength of the joint bonded at 510 ℃ for 50 min reached 64 MPa due to the metallurgical bonding of the joint and improving its homogeneity of composition and microstructure. It is favorable to increase the bonding time for improving mechanical properties of TLP bonded magnesium MMC joint.
基金Supported by the CRRC Changchun Railway Vehicles Co.,Ltd.(No.GYHB(12)-01-00-014(067))the Natural Science Foundation of Shandong Province,China(No.ZR2020MB080)。
文摘Being an exclusive construction material for lightweight rail vehicles,protection from pitting corrosion in harsh marine atmospheric environment in high humidity and Cl-ion concentration is critical for austenitic SUS 301L stainless steel(SS),especially when it inevitably suff ers from mechanical damages during post disposals.Herein,an innovative dry passivation method for austenitic SUS 301L SS was established in a closed air atmosphere at low temperature and constant pressure.The process parameters were optimized,and the passivation mechanism was explained using polarization curve,electrochemical impedance spectroscopy(EIS),X-ray photoelectron spectroscopy(XPS),and contact angle measurement.The pitting corrosion susceptibility of the passive fi lm prepared in a closed air chamber under 1.0×10^(5) Pa at 80℃ for 80 min was evaluated in 3.5%NaCl solution and exhibited higher pitting potential and corrosion resistance,lower passivity-maintaining current density,and wettability when compared with conventional nitric acid treatment.Besides,dry passivation facilitated the repairing of the surface structural defect itself and the post-processing damage,similar to the accelerated aging of fi lm.The decrease in oxygen concentration and convection-diff usion strengthened the preferential chromium oxidation to form a compact chromium-rich passive fi lm to resist the aggression of Cl-ion.
基金Project supported by the National Natural Science Foundation of China(Nos.11772297 and11822208)
文摘The dissipation function in turbulent plane Poiseuille flows(PPFs) and plane Couette flows(PCFs) subject to spanwise rotations is analyzed. It is found that, in the PCFs without system rotations, the mean part is constant while the fluctuation part follows a logarithmic law, resulting in a similar logarithmic skin friction law as PPFs.However, if the flow system rotates in the spanwise direction, no obvious dependence on the rotation number can be evaluated. In the PPFs with rotations, the dissipation function shows an increase with the rotation number, while in the PCFs with rotations,when the rotation number increases, the dissipation function first decreases and then increases.
基金Project (2020YFF0304103-03) supported by the National Key Researsh and Development Program of ChinaProjects (P2019J023,P2020J025) supported by the Science and Technology Research Program of China State Railway Group Co.,Ltd.+1 种基金Project (202045014) supported by the Initial Funding of Specially-Appointed Professorship of Central South University,ChinaProject (2023ZZTS0424) supported by the Independent Exploration and Innovation Project for Graduate Students of Central South University,China。
基金This work is supported by the consulting research project of the major project of China National Railway Group Co.,Ltd.(No.K2020J003)the Chinese Academy of Engineering(No.2020-XY-79)。
文摘Contagious pathogens like COVID-19 transmitted via respiratory droplets spread effortlessly in the passenger compartments of transport,significantly jeopardizing passengers’safety when taking public transportation.To date,studies on the fundamental theories of airborne droplet transmission and the engineering application of decontamination techniques are insufficient for the prevention and control of pathogens transmitting in the compartments of passenger transport.It is essential to systematically investigate the control approaches to restrain pathogens from transmitting in passenger compartments.Herein,a theoretical framework for calculating the transmission of pathogens in a complex compartment environment was proposed,and experimental platforms that satisfy the Biosafety Level-2 Laboratory safety level for compartment environment simulations were built based on a set of real train cabins.On these bases,numerical investigations on the motion of pathogen-laden droplets were conducted,and decontamination techniques were examined experimentally.Thereby,control measures on the pathogen transmission and pathogen decontamination schemes were proposed.Moreover,highly efficient decontamination devices were developed,and coping strategies for epidemic emergencies were devised.The outcomes provide theoretical and technical support for developing the next generation of transportation and the prevention and control measures cooperatively considering regular and pandemic times.
基金supported by National Natural Science Foundation of China(NSFC)under project 51977130.
文摘This study proposes a method for measuring the operational current of high temperature superconducting(HTS)non‐insulation(NI)closed‐loop coils,which operate in the steady persistent‐current‐mode(PCM).HTS NI closed‐loop coils are promising for many easily‐quenching direct‐current(DC)applications,where their performance is determined by magnetomotive forces,total number of turns,and dimensions.As the primary interface parameter in an application system,the operational current must be accurately and rapidly measured.Generally,this is achieved by dividing the measured magnetic field by the coil constant.However,even if the influence of the screening current induced field(SCIF)is not considered,existing methods for the coil constant may be disturbed by the performance and location of Hall sensors,or experience a long measuring period.Therefore,a relatively accurate and fast method is proposed in this study,which is based on adjusting the output current of the adjustable power supply and monitoring the coil voltage as an indicator.The proposed method was validated through experiments and simulations using an equivalent circuit model coupled with a finite element method(FEM)model,and its current accuracy can be equivalent to the resolution of the employed power supply.It was demonstrated that this method reduced the requirements for Hall sensor’s performance and location,and has a more reliable accuracy in contrast to the simulation method.Compared to the experimentally conventional method,the proposed method presents a significantly faster speed.The impact of the SCIF was considered and proven to be negligible for the tested pancake coils.Even for coils whose coil constant vibrates owing to the SCIF,this method can be adapted to directly measure various operational currents.Furthermore,it was demonstrated that the measurement error can be influenced by the current discrepancy among turns when the coil is not in the steady PCM,and a procedure for reducing this error was proposed.
基金Project(2017 YFB 1200801-12)supported by the National Natural Science Foundation of China。
文摘Predicting the life of Ni-Cd battery for electric multiple units(EMU)can not only improve the safety and reliability of battery,but also reduce the operating costs of EMU.For this reason,a life prediction method based on linear Wiener process is proposed,which is suitable for both monotonic and non-monotonic degraded systems with accurate results.Firstly,a unary linear Wiener degradation model is established,and the parameters of the model are estimated by using the expectation-maximization algorithm(EM).With the established model,the remaining useful life(RUL)of Ni Cd battery and its distribution are obtained.Then based on the unary Wiener process degradation model,the correlation between capacity and energy is analyzed through Copula function to build a binary linear Wiener degradation model,where its parameters are estimated using Markov Chain Monte Carlo(MCMC)method.Finally,according to the binary Wiener process model,the battery RUL and its distribution are acquired.The experimental results show that the binary linear Wiener degradation model based on capacity and energy possesses higher accuracy than the unary linear wiener process degradation model.
文摘1.A worldwide history of high-speed trains High-speed railway(HSR)is defined by the International Union of Railways(UIC)as new lines with design speeds above 250 kmh1 and upgraded existing lines with speeds of up to 200 kmh1[1].In China,HSR is defined as new passenger-dedicated lines designed for electric multiple unit(EMU)trains running at a speed of 250 kmh1 or above(actual or reserved),with an initial operation speed not lower than 200 kmh1[2].The worldwide development of HSRs and high-speed EMUs can be roughly divided into three stages:initial operation,line platform expansion,and rapid development.
基金supported by Changchun Science and Technology Innovation"Double Tenth Project"(Grant No.17SS024)Technical Development Project of CRRC Changchun Railway Vehicles Co.,Ltd(Grant No.16GCZX006)
文摘The application status of friction stir welding technology is introduced,and the application research of advanced FSW technology in the manufacture of high-speed electric multiple unit aluminum alloy body is analyzed,including the application of traditional friction stir welding technology to a combination of a lap joint and butt joint,and butt joint of large thick plate by both sides process,also introduces bobbin-tool friction stir welding to a butt joint and three-dimensional space curved friction stir welding to T-joint. At the same time the future development trend of new FSW technology derived from traditional FSW technology in rail vehicle manufacturing industry is put forward. As the fast developing of critical technology used on railway vehicles,quick applying advanced welding technology will affect products quality,manufacturing cost and production cycle time directly,and it certainly will be one of the approaches to develop markets by all the railway vehicles manufacturing enterprises.
基金Project(51975591)supported by the National Natural Science Foundation of ChinaProject(P2018J003)supported by the Technology Research and Development Program of China Railway。
文摘The transient pressures induced by trains passing through a tunnel and their impact on the structural safety of the tunnel lining were numerically analyzed.The results show that the pressure change increases rapidly along the tunnel length,and the maximum value is observed at around 200 m from the entrance,while the maximum pressure amplitude is detected at 250 m from the entrance when two trains meeting in a double-track tunnel.The maximum peak pressure on the tunnel induced by a train passing through a 70 m^(2) single-track tunnel,100 m^(2) double-track tunnel and two trains meeting in the 100 m^(2) double-track tunnel at 350 km/h,are−4544 Pa,−3137 Pa and−5909 Pa,respectively.The aerodynamic pressure induced axial forces acting on the tunnel lining are only 8%,5%and 9%,respectively,of those generated by the earth pressure.It seems that the aerodynamic loads exert little underlying influence on the static strength safety of the tunnel lining providing that the existing cracks and defects are not considered.
基金supported by the Key Science and Technology of Jilin Province(Grant No.20140204070GX)
文摘Under the spirit of sustainable development, ‘lightweight’ has been gradually included into the vehicle design criterion by many manufacturers and used in automobile production. Following this trend, domestic wheel suppliers also begin to study the technology of lightweight wheel. One way to achieve this goal is improving strength grade of the steel and optimizing the structure design in the field of steel wheels. But there are a few problems in flash butt welding process in the application of high strength steel, leading to high rejection rates. SW400 steel is a special high strength wheel steel developed by Benxi Steel. Taking SW400 steel as the research material, this article studys the feasibility of improving the properties of rim flash butt welded joints by adding preheating process.