At present,the increasing consumption of electrical energy is accompanied by the increasing pressure on natural environment,excessive discharge of waste gas,and accelerated rate of global warming.Photovoltaic new ener...At present,the increasing consumption of electrical energy is accompanied by the increasing pressure on natural environment,excessive discharge of waste gas,and accelerated rate of global warming.Photovoltaic new energy plays an important role in reducing costs and improving resource utilization.The leading power industries should come up with new designs of equipment that is in line with the green concept,improve the utilization of photovoltaic energy,and realize sustainable economic development.In view of this,this paper mainly analyzes the application of photovoltaic new energy in electrical energy conservation.展开更多
Electrocatalysts with optimal efficiency and durability for the oxygen evolution reaction(OER)are becoming increasingly important as the demand for alkaline water/seawater electrolysis technology grows.Herein,a novel ...Electrocatalysts with optimal efficiency and durability for the oxygen evolution reaction(OER)are becoming increasingly important as the demand for alkaline water/seawater electrolysis technology grows.Herein,a novel rose-shaped NiFe-layered double hydroxide(LDH)/NiCo_(2)O_(4)composed of amorphous wrinkled NiFe-LDH and highly crystalline NiCo_(2)O_(4)was synthesized with rich heterointerfaces.Many unsaturated metal sites are generated due to significant charge reconstruction at the heterointerface between the crystalline and amorphous phases.These metal sites could trigger and provide more active sites.The density functional theory(DFT)reveals that a new charge transfer channel(Co-Fe)was formed at the heterointerface between NiFe-LDH as electron acceptor and NiCo_(2)O_(4)as electron donor.The new charge transfer channel boosts interfacial charge transfer and enhances catalytic efficiency.The NiFe-LDH/NiCo_(2)O_(4)/nickel foam(NF)drives current densities of 10 and 100 mA·cm−2 with overpotentials of 193 and 236 mV,respectively.The composite electrode demonstrates a fast turnover frequency(0.0143 s−1)at 1.45 V vs.RHE(RHE=reversible hydrogen electrode),which is 5.5 times greater than pure NiCo_(2)O_(4),suggesting its superior intrinsic activity.Additionally,NiFe-LDH/NiCo_(2)O_(4)/NF electrode exhibited negligible degradation after 150 h of uninterrupted running in alkaline seawater oxidation.This study introduces a method for preparing high-efficiency electrocatalysts utilized in alkaline water/seawater electrolysis.展开更多
文摘At present,the increasing consumption of electrical energy is accompanied by the increasing pressure on natural environment,excessive discharge of waste gas,and accelerated rate of global warming.Photovoltaic new energy plays an important role in reducing costs and improving resource utilization.The leading power industries should come up with new designs of equipment that is in line with the green concept,improve the utilization of photovoltaic energy,and realize sustainable economic development.In view of this,this paper mainly analyzes the application of photovoltaic new energy in electrical energy conservation.
基金the National Natural Science Foundation of China(Nos.21878242,52206277,and 21828802)the Basic Science Center Program for Ordered Energy Conversion of National Nature Science Foundation(No.51888103)the China Postdoctoral Science Foundation(No.2022MD723821).
文摘Electrocatalysts with optimal efficiency and durability for the oxygen evolution reaction(OER)are becoming increasingly important as the demand for alkaline water/seawater electrolysis technology grows.Herein,a novel rose-shaped NiFe-layered double hydroxide(LDH)/NiCo_(2)O_(4)composed of amorphous wrinkled NiFe-LDH and highly crystalline NiCo_(2)O_(4)was synthesized with rich heterointerfaces.Many unsaturated metal sites are generated due to significant charge reconstruction at the heterointerface between the crystalline and amorphous phases.These metal sites could trigger and provide more active sites.The density functional theory(DFT)reveals that a new charge transfer channel(Co-Fe)was formed at the heterointerface between NiFe-LDH as electron acceptor and NiCo_(2)O_(4)as electron donor.The new charge transfer channel boosts interfacial charge transfer and enhances catalytic efficiency.The NiFe-LDH/NiCo_(2)O_(4)/nickel foam(NF)drives current densities of 10 and 100 mA·cm−2 with overpotentials of 193 and 236 mV,respectively.The composite electrode demonstrates a fast turnover frequency(0.0143 s−1)at 1.45 V vs.RHE(RHE=reversible hydrogen electrode),which is 5.5 times greater than pure NiCo_(2)O_(4),suggesting its superior intrinsic activity.Additionally,NiFe-LDH/NiCo_(2)O_(4)/NF electrode exhibited negligible degradation after 150 h of uninterrupted running in alkaline seawater oxidation.This study introduces a method for preparing high-efficiency electrocatalysts utilized in alkaline water/seawater electrolysis.