TiAlSiN coating was deposited on H13 hot work mould steel using cathodic arc ion plating(CAIP). The surface-interface morphologies and phases of the obtained coating were analyzed using field emission scanning elect...TiAlSiN coating was deposited on H13 hot work mould steel using cathodic arc ion plating(CAIP). The surface-interface morphologies and phases of the obtained coating were analyzed using field emission scanning electron microscopy(FESEM) and X-ray diffraction(XRD), respectively, and the morphologies, distributions of chemical elements and profiles of worn tracks were also researched using scanning electron microscopy(SEM), energy disperse spectroscopy(EDS), and optical microscope(OM), respectively. The friction-wear performances of TiAlSiN coating under oil lubricated and dry fiction conditions were investigated, and the wear mechanisms of TiAlSiN coating were discussed. The experimental results show that the coating is primarily composed of(Ti, Al)N, AlTiN, and TiN hard phases, Si_3N_4 exists between the(Ti, Al)N crystal grains, increasing the coating microhardness to 3200 HV. The TiAlSiN coating has excellent performances of reducing friction and wear resistance, the average coefficient of friction(COF) of TiAlSiN coating under oil lubricated condition is only 0.05, lowered than the average COF of 0.211 under dry friction condition, the wear rate decreases by about 81.2% compared with that under dry friction condition. The wear mechanism of TiAlSiN coating under oil lubricated and dry friction conditions is composed of abrasive wear, fatigue wear, and abrasive wear, respectively. The internal friction of oil lubrication is a main factor of decreasing fatigue wear.展开更多
基金Funded by the Jiangsu Province Science and Technology Support Program(Industry)(BE2014865)
文摘TiAlSiN coating was deposited on H13 hot work mould steel using cathodic arc ion plating(CAIP). The surface-interface morphologies and phases of the obtained coating were analyzed using field emission scanning electron microscopy(FESEM) and X-ray diffraction(XRD), respectively, and the morphologies, distributions of chemical elements and profiles of worn tracks were also researched using scanning electron microscopy(SEM), energy disperse spectroscopy(EDS), and optical microscope(OM), respectively. The friction-wear performances of TiAlSiN coating under oil lubricated and dry fiction conditions were investigated, and the wear mechanisms of TiAlSiN coating were discussed. The experimental results show that the coating is primarily composed of(Ti, Al)N, AlTiN, and TiN hard phases, Si_3N_4 exists between the(Ti, Al)N crystal grains, increasing the coating microhardness to 3200 HV. The TiAlSiN coating has excellent performances of reducing friction and wear resistance, the average coefficient of friction(COF) of TiAlSiN coating under oil lubricated condition is only 0.05, lowered than the average COF of 0.211 under dry friction condition, the wear rate decreases by about 81.2% compared with that under dry friction condition. The wear mechanism of TiAlSiN coating under oil lubricated and dry friction conditions is composed of abrasive wear, fatigue wear, and abrasive wear, respectively. The internal friction of oil lubrication is a main factor of decreasing fatigue wear.