Nanocrystalline TiO2 thin film electrodes have been prepared from mixed pastes of tetrabutyl titanate and nanocrystalline TiO2 particles by common pressure hydro- thermal method at low temperature. The tetrabutyl tita...Nanocrystalline TiO2 thin film electrodes have been prepared from mixed pastes of tetrabutyl titanate and nanocrystalline TiO2 particles by common pressure hydro- thermal method at low temperature. The tetrabutyl titanate was hydrolyzed and crystallized into anatase TiO2 to inter- connect nanocrystalline TiO2 particles and adhere them to conductive substrates, obtaining highly porous and me- chanically stable TiO2 nanocrystalline film. The conversion efficiencies of the dye-sensitized solar cells based on prepared electrodes on conductive glass substrates and flexible sub- strates were 4.8% and 1.9% under illumination of 100 mW/cm2, respectively.展开更多
基金supported by the National Basic Research Development Program(973)(Grant No.G200028205)the High-Tech Research and Development(863)Program(Grant No.2002AA302403)the National Natural Science Foundation of China(Grant No.50221201).
文摘Nanocrystalline TiO2 thin film electrodes have been prepared from mixed pastes of tetrabutyl titanate and nanocrystalline TiO2 particles by common pressure hydro- thermal method at low temperature. The tetrabutyl titanate was hydrolyzed and crystallized into anatase TiO2 to inter- connect nanocrystalline TiO2 particles and adhere them to conductive substrates, obtaining highly porous and me- chanically stable TiO2 nanocrystalline film. The conversion efficiencies of the dye-sensitized solar cells based on prepared electrodes on conductive glass substrates and flexible sub- strates were 4.8% and 1.9% under illumination of 100 mW/cm2, respectively.