This study presents an overview of viscoelastic characteristics of biocomposites derived of natural-fibre-reinforced thermoplastic polymers and predictive models have been presented in order to understand their rheolo...This study presents an overview of viscoelastic characteristics of biocomposites derived of natural-fibre-reinforced thermoplastic polymers and predictive models have been presented in order to understand their rheological behavior. Various constitutive equations are reviewed for a better understanding of their applicability to polymer melt in determining the viscosity. The models to be investigated are the Giesekus-Leonov model, the Upper Convected Maxwell (UCM) model, the White-Metzner model, K-BKZ model, the Oldroyd-B model, and the Phan-Thien-Tanner models. The aforementioned models are the most powerful for predicting the rheological behavior of hybrid and green viscoelastic materials in the presence of high shear rate and in all dimensions. The Phan-Thien Tanner model, the Oldroyd-B model, and the Giesekus model can be used in various modes to fit the relaxation modulus accurately and to predict the shear thinning as well as shear thickening characteristics. The Phan-Thien Tanner, K-BKZ, Upper convected Maxwell, Oldroyd-B, and Giesekus models predicted the steady shear viscosity and the transient first normal stress coefficient better than the White-Metzner model for green-fibre-reinforced thermoplastic composites.展开更多
The aim of this work was to investigate the effect of lithium chloride (LiCl) on the fibre length distribution, melting temperature and the rheological characteristics of high yield pulp fibre reinforced polyamide bio...The aim of this work was to investigate the effect of lithium chloride (LiCl) on the fibre length distribution, melting temperature and the rheological characteristics of high yield pulp fibre reinforced polyamide biocomposite. The inorganic salt lithium chloride (LiCl) was used to decrease the melting and processing temperature of bio-based polyamide 11. The extrusion method and Brabender mixer approaches were used to carry out the compounding process. The densities and fibre content were found to be increased after processing using both compounding methods. The HYP fibre length distribution analysis realized using the FQA equipment showed an important fibre-length reduction after processing by both techniques. The rheological properties of HYP-reinforced net and modified bio-based polyamide 11 “PA11” (HYP/PA11) composite were investigated using a capillary rheometer. The rheological tests were performed in function of the shear rate for different temperature conditions. The low-temperature process compounding had higher shear viscosity;this was because during the process the temperature was low and the mixing and melting were induced by the high shear rate created during compounding process. Experimental test results using the extrusion process showed a steep decrease in shear viscosity with increasing shear rate, and this melt-flow characteristic corresponds to shear-thinning behavior in HYP/PA11, and this steep decrease in the melt viscosity can be associated to the hydrolyse reaction of nylon for high pulp fibre moisture content at high temperature. In addition to the low processing temperature, the melt viscosity of the biocomposite using the Brabender mixer approach increases with increasing shear rate, and this stability in the increase even at high shear rate for high pulp moisture content is associated to the presence of inorganic salt lithium chloride which creates the hydrogen bonds with pulp during the compounding process.展开更多
The rheological behavior of composites made with low-density polyamide 11 (PA11) and high yield pulp fibre (HYP) is evaluated. The rheological properties of high-yield, pulp-reinforced bio- based Nylon 11 HYP/PA11 com...The rheological behavior of composites made with low-density polyamide 11 (PA11) and high yield pulp fibre (HYP) is evaluated. The rheological properties of high-yield, pulp-reinforced bio- based Nylon 11 HYP/PA11 composite were investigated using a capillary rheometer. The rheological tests were realized in function of the shear rate for different temperature conditions. The experimental results showed that identically for fibre content and aspect ratio, the shearing effects decreased as the temperature increased;that is, the HYP/PA11 became more non-Newtonian in the higher temperature region, which corresponds to the high pseudoplasticity of the HYP/PA11. At low HYP content, the shear viscosity is expected to increase rapidly with increasing concentrations of the fibres because of the rapidly increasing interactions between particles as they become more closely packed. However, at very high fibre content, random anisotropic structure of the fibres in polymer melts is created. The increase in shear viscosity is greater at lower shear rates, where fibre and polymer molecules are not completely oriented.展开更多
The aim of this work was to develop a mathematical model to investigate the rheological characteristics of viscoelastic pulp-fibre composite materials. The rheological properties of High-Yield Pulp (HYP) reinforced bi...The aim of this work was to develop a mathematical model to investigate the rheological characteristics of viscoelastic pulp-fibre composite materials. The rheological properties of High-Yield Pulp (HYP) reinforced bio-based Nylon 11 (Polyamide 11) (PA11) composite (HYP/PA11) were investigated using a capillary rheometer. Novel predicted multiphase rheological-model-based polymer, fibre, and interphasial phases were developed. Rheological characteristics of the compo-site components influence the development of resultant microstructures;this in turn affects mechanical characteristics of a multiphase composite. The main rheological characteristics of polymer materials are viscosity and shear rate. Experimental and theoretical test results of HYP/PA11 show a steep decrease in apparent viscosity with increasing shear rate, and this melt-flow characteristic corresponds to shear-thinning behavior in HYP/PA11. The non-linear mathematical model to predict the rheological behavior of HYP/PA11 was validated experimentally at 200°C and 5000 S-1?shear rate. Finally, predicted and experimental viscosity results were compared and found to be in a strong agreement.展开更多
Lithium-sulfur battery has become one of the most promising candidates for next generation batteries, and it is still restricted due to the low sulfur conductivity, large volume expansion and severe polysulfide shuttl...Lithium-sulfur battery has become one of the most promising candidates for next generation batteries, and it is still restricted due to the low sulfur conductivity, large volume expansion and severe polysulfide shuttling. Herein, we present a novel hybrid electrode with a ternary nanomaterial based on sulfur-impregnated multiwalled carbon nanotubes filled with ordered tin-monoxide nanoparticles (MWCNT-SnO/S). Using a dry plasma reduction method, a mechanically robust material is prepared as a cathode host material for lithium-sulfur batteries. The MWCNT-SnO/S electrode exhibits high conductivity, good ability to capture polysulfides, and small volume change during a repeated charge-discharge process. In situ transmission electron microscopy and ultraviolet-visible absorption results indicate that the MWCNT-SnO host efficiently suppresses volume expansion during lithiation and reduces polysulfide dissolution into the electrolyte. Furthermore, the ordered SnO nanoparticles in the MWCNTs facilitate fast ion/electron transfer during the redox reactions by acting as connective links between the walls of the MWCNTs. The MWCNT-SnO/S cathode with a high sulfur content of 70 wt.% exhibits an initial discharge capacity of 1,682.4 mAh·g^-1 at 167.5 m·g^-1 (0.1 C rate) and retains a capacity of 530.1 mAh·g^-1 at 0.5 C after 1,000 cycles with nearly 100% Coulombic efficiency. Furthermore, the electrode exhibits the high capacity even at a high current rate of 20 C.展开更多
文摘This study presents an overview of viscoelastic characteristics of biocomposites derived of natural-fibre-reinforced thermoplastic polymers and predictive models have been presented in order to understand their rheological behavior. Various constitutive equations are reviewed for a better understanding of their applicability to polymer melt in determining the viscosity. The models to be investigated are the Giesekus-Leonov model, the Upper Convected Maxwell (UCM) model, the White-Metzner model, K-BKZ model, the Oldroyd-B model, and the Phan-Thien-Tanner models. The aforementioned models are the most powerful for predicting the rheological behavior of hybrid and green viscoelastic materials in the presence of high shear rate and in all dimensions. The Phan-Thien Tanner model, the Oldroyd-B model, and the Giesekus model can be used in various modes to fit the relaxation modulus accurately and to predict the shear thinning as well as shear thickening characteristics. The Phan-Thien Tanner, K-BKZ, Upper convected Maxwell, Oldroyd-B, and Giesekus models predicted the steady shear viscosity and the transient first normal stress coefficient better than the White-Metzner model for green-fibre-reinforced thermoplastic composites.
文摘The aim of this work was to investigate the effect of lithium chloride (LiCl) on the fibre length distribution, melting temperature and the rheological characteristics of high yield pulp fibre reinforced polyamide biocomposite. The inorganic salt lithium chloride (LiCl) was used to decrease the melting and processing temperature of bio-based polyamide 11. The extrusion method and Brabender mixer approaches were used to carry out the compounding process. The densities and fibre content were found to be increased after processing using both compounding methods. The HYP fibre length distribution analysis realized using the FQA equipment showed an important fibre-length reduction after processing by both techniques. The rheological properties of HYP-reinforced net and modified bio-based polyamide 11 “PA11” (HYP/PA11) composite were investigated using a capillary rheometer. The rheological tests were performed in function of the shear rate for different temperature conditions. The low-temperature process compounding had higher shear viscosity;this was because during the process the temperature was low and the mixing and melting were induced by the high shear rate created during compounding process. Experimental test results using the extrusion process showed a steep decrease in shear viscosity with increasing shear rate, and this melt-flow characteristic corresponds to shear-thinning behavior in HYP/PA11, and this steep decrease in the melt viscosity can be associated to the hydrolyse reaction of nylon for high pulp fibre moisture content at high temperature. In addition to the low processing temperature, the melt viscosity of the biocomposite using the Brabender mixer approach increases with increasing shear rate, and this stability in the increase even at high shear rate for high pulp moisture content is associated to the presence of inorganic salt lithium chloride which creates the hydrogen bonds with pulp during the compounding process.
文摘The rheological behavior of composites made with low-density polyamide 11 (PA11) and high yield pulp fibre (HYP) is evaluated. The rheological properties of high-yield, pulp-reinforced bio- based Nylon 11 HYP/PA11 composite were investigated using a capillary rheometer. The rheological tests were realized in function of the shear rate for different temperature conditions. The experimental results showed that identically for fibre content and aspect ratio, the shearing effects decreased as the temperature increased;that is, the HYP/PA11 became more non-Newtonian in the higher temperature region, which corresponds to the high pseudoplasticity of the HYP/PA11. At low HYP content, the shear viscosity is expected to increase rapidly with increasing concentrations of the fibres because of the rapidly increasing interactions between particles as they become more closely packed. However, at very high fibre content, random anisotropic structure of the fibres in polymer melts is created. The increase in shear viscosity is greater at lower shear rates, where fibre and polymer molecules are not completely oriented.
文摘The aim of this work was to develop a mathematical model to investigate the rheological characteristics of viscoelastic pulp-fibre composite materials. The rheological properties of High-Yield Pulp (HYP) reinforced bio-based Nylon 11 (Polyamide 11) (PA11) composite (HYP/PA11) were investigated using a capillary rheometer. Novel predicted multiphase rheological-model-based polymer, fibre, and interphasial phases were developed. Rheological characteristics of the compo-site components influence the development of resultant microstructures;this in turn affects mechanical characteristics of a multiphase composite. The main rheological characteristics of polymer materials are viscosity and shear rate. Experimental and theoretical test results of HYP/PA11 show a steep decrease in apparent viscosity with increasing shear rate, and this melt-flow characteristic corresponds to shear-thinning behavior in HYP/PA11. The non-linear mathematical model to predict the rheological behavior of HYP/PA11 was validated experimentally at 200°C and 5000 S-1?shear rate. Finally, predicted and experimental viscosity results were compared and found to be in a strong agreement.
文摘Lithium-sulfur battery has become one of the most promising candidates for next generation batteries, and it is still restricted due to the low sulfur conductivity, large volume expansion and severe polysulfide shuttling. Herein, we present a novel hybrid electrode with a ternary nanomaterial based on sulfur-impregnated multiwalled carbon nanotubes filled with ordered tin-monoxide nanoparticles (MWCNT-SnO/S). Using a dry plasma reduction method, a mechanically robust material is prepared as a cathode host material for lithium-sulfur batteries. The MWCNT-SnO/S electrode exhibits high conductivity, good ability to capture polysulfides, and small volume change during a repeated charge-discharge process. In situ transmission electron microscopy and ultraviolet-visible absorption results indicate that the MWCNT-SnO host efficiently suppresses volume expansion during lithiation and reduces polysulfide dissolution into the electrolyte. Furthermore, the ordered SnO nanoparticles in the MWCNTs facilitate fast ion/electron transfer during the redox reactions by acting as connective links between the walls of the MWCNTs. The MWCNT-SnO/S cathode with a high sulfur content of 70 wt.% exhibits an initial discharge capacity of 1,682.4 mAh·g^-1 at 167.5 m·g^-1 (0.1 C rate) and retains a capacity of 530.1 mAh·g^-1 at 0.5 C after 1,000 cycles with nearly 100% Coulombic efficiency. Furthermore, the electrode exhibits the high capacity even at a high current rate of 20 C.