Leaching behaviour of heavy metals (HMs) from simulated soil (SS), prepared according to standard guidelines, as well as its constituents (quartz sand (QS), bentonite clay (BC), and peat moss (PM)) were investigated. ...Leaching behaviour of heavy metals (HMs) from simulated soil (SS), prepared according to standard guidelines, as well as its constituents (quartz sand (QS), bentonite clay (BC), and peat moss (PM)) were investigated. The study focused on a batch process with the aim of comparing the leaching potentials and metals solubilisation of ethylene diamine tetraacetic acid (EDTA), ethylene diamine disuccinic acid (EDDS), acetylacetone (Hacac), citric acid (CA), and tartaric acid (TA) for sustainable metal extraction purposes after a maximum leaching time of 60 min. The HMs concentrations with which the constituents were spiked with was such that reflected a contaminated site. The recovery potentials of both the SS and its constituents were found to vary for single metal (SM) and multi-metal (MM) systems. EDTA was the most efficient (on average 31% and 33% for SM and MM) and TA the least efficient (on average of 2% and 3% for SM and MM) extractant. For Hacac, preferential recovery for Cu and Ni were significant when compared to the other metals, while, metal recovery by EDDS in SS was lower than could be expected. The leaching trend for the targeted metals was studied using conventional leaching models.展开更多
This paper shows the effect of three different leaching processes and 4 different leaching agents on the extraction of five metals of interest from an artificially contaminated simulated soil (SS). For the first time,...This paper shows the effect of three different leaching processes and 4 different leaching agents on the extraction of five metals of interest from an artificially contaminated simulated soil (SS). For the first time, it is shown that these processes and extractants could be compared directly, as the soil was a constant variable. The interest of this study is that the recovery of metals that are of importance in the circular economy, have been demonstrated from an unusual resource, soil. Metal reserves are constantly decreasing worldwide and alternative resources becoming topical. Urban mining of contaminated land and/or waste sites, therefore, becomes an attractive choice for metal extraction/recovery. This study has shown that metal extraction of up to 50% efficiency could be achieved. Furthermore, EDTA proved to be the best overall extractant when used in batch leaching processes. However, different metals showed preferential recoveries with specific processes and extractants. Therefore the results suggest that the design of a contaminant-specific leaching process performed in a sequential manner could not only leach the metals, but also achieve reasonable separation of the metals.展开更多
文摘Leaching behaviour of heavy metals (HMs) from simulated soil (SS), prepared according to standard guidelines, as well as its constituents (quartz sand (QS), bentonite clay (BC), and peat moss (PM)) were investigated. The study focused on a batch process with the aim of comparing the leaching potentials and metals solubilisation of ethylene diamine tetraacetic acid (EDTA), ethylene diamine disuccinic acid (EDDS), acetylacetone (Hacac), citric acid (CA), and tartaric acid (TA) for sustainable metal extraction purposes after a maximum leaching time of 60 min. The HMs concentrations with which the constituents were spiked with was such that reflected a contaminated site. The recovery potentials of both the SS and its constituents were found to vary for single metal (SM) and multi-metal (MM) systems. EDTA was the most efficient (on average 31% and 33% for SM and MM) and TA the least efficient (on average of 2% and 3% for SM and MM) extractant. For Hacac, preferential recovery for Cu and Ni were significant when compared to the other metals, while, metal recovery by EDDS in SS was lower than could be expected. The leaching trend for the targeted metals was studied using conventional leaching models.
文摘This paper shows the effect of three different leaching processes and 4 different leaching agents on the extraction of five metals of interest from an artificially contaminated simulated soil (SS). For the first time, it is shown that these processes and extractants could be compared directly, as the soil was a constant variable. The interest of this study is that the recovery of metals that are of importance in the circular economy, have been demonstrated from an unusual resource, soil. Metal reserves are constantly decreasing worldwide and alternative resources becoming topical. Urban mining of contaminated land and/or waste sites, therefore, becomes an attractive choice for metal extraction/recovery. This study has shown that metal extraction of up to 50% efficiency could be achieved. Furthermore, EDTA proved to be the best overall extractant when used in batch leaching processes. However, different metals showed preferential recoveries with specific processes and extractants. Therefore the results suggest that the design of a contaminant-specific leaching process performed in a sequential manner could not only leach the metals, but also achieve reasonable separation of the metals.