With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smar...With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle.展开更多
Identifying a device and detecting a change in its position is critical for secure devices management in the Internet of Things(IoT).In this paper,a device management system is proposed to track the devices by using a...Identifying a device and detecting a change in its position is critical for secure devices management in the Internet of Things(IoT).In this paper,a device management system is proposed to track the devices by using audio-based location distinction techniques.In the proposed scheme,traditional cryptographic techniques,such as symmetric encryption algorithm,RSA-based signcryption scheme,and audio-based secure transmission,are utilized to provide authentication,non-repudiation,and confidentiality in the information interaction of the management system.Moreover,an audio-based location distinction method is designed to detect the position change of the devices.Specifically,the audio frequency response(AFR)of several frequency points is utilized as a device signature.The device signature has the features as follows.(1)Hardware Signature:different pairs of speaker and microphone have different signatures;(2)Distance Signature:in the same direction,the signatures are different at different distances;and(3)Direction Signature:at the same distance,the signatures are different in different directions.Based on the features above,amovement detection algorithmfor device identification and location distinction is designed.Moreover,a secure communication protocol is also proposed by using traditional cryptographic techniques to provide integrity,authentication,and non-repudiation in the process of information interaction between devices,Access Points(APs),and Severs.Extensive experiments are conducted to evaluate the performance of the proposed method.The experimental results show that the proposedmethod has a good performance in accuracy and energy consumption.展开更多
Numerical control(NC) bending experiments with different process parameters were carried out for 5052O aluminum alloy tubes with outer diameter of 70 mm, wall thickness of 1.5 mm, and centerline bending radius of 105 ...Numerical control(NC) bending experiments with different process parameters were carried out for 5052O aluminum alloy tubes with outer diameter of 70 mm, wall thickness of 1.5 mm, and centerline bending radius of 105 mm. And the effects of process parameters on tube wall thinning and cross section distortion were investigated. Meanwhile, acceptable bending of the 5052O aluminum tubes was accomplished based on the above experiments. The results show that the effects of process parameters on bending process for large diameter thin-walled aluminum alloy tubes are similar to those for small diameter thin-walled tubes, but the forming quality of the large diameter thin-walled aluminum alloy tubes is much more sensitive to the process parameters and thus it is more difficult to form.展开更多
A finite element model including full-scale circular arc windshield glass and the relative parts of the military plane is established in this paper. The model is analyzed by using an explicit element code LS-DYNA3D fo...A finite element model including full-scale circular arc windshield glass and the relative parts of the military plane is established in this paper. The model is analyzed by using an explicit element code LS-DYNA3D for analyzing the nonlinear dynamic response of structures. The data in aspects of displacement, strain, stress and contact force in the process of deformation are obtained. The deformation and failure mechanism of circular arc windshield glass are discussed. The possible location at which failure may take place is given. The valuable data are provided for designing,researching and producing new windshields with high crashworthiness.展开更多
The response surface methodology is used to study the effect of stirring parameters on the mechanical properties of magnesium matrix composites(MMCs).The composites are manufactured using different stirring speeds(500...The response surface methodology is used to study the effect of stirring parameters on the mechanical properties of magnesium matrix composites(MMCs).The composites are manufactured using different stirring speeds(500,600,and 700 r/min),stirring time(10,20,and 30 min),and weight fractions(0,2.5%,5%,and10%)of silicon carbide particles.The experimental results show that 700 r/min and 20 min are the best conditions for obtaining the best mechanical properties.Based on the desirability function methodology,the optimum parameter values for the best mechanical characteristics of produced composites are reached at 696.102 r/min,19.889 min,and9.961%(in weight).展开更多
Background This study aims at addressing the lack of closed-loop feedback optimization enabling tool in aircraft automatic spraying systems;we systematically analyze a three-dimensional(3D)virtual-real mapping techniq...Background This study aims at addressing the lack of closed-loop feedback optimization enabling tool in aircraft automatic spraying systems;we systematically analyze a three-dimensional(3D)virtual-real mapping technique,namely the digital twin technique,used by the automatic spraying system.Methods With the sensors installed in the spraying system,the spraying working parameters are collected online and are used for driving the 3D virtual spraying system to realize the total-factor monitoring of the spraying operation.Furthermore,the operation-evaluation model is applied for analyzing and managing the key indexes of the spraying quality;once the data value of the key indexes exceeds a threshold,the operation shall be optimized automatically.Results This approach can effectively support the high-efficiency analysis,evaluation,and optimization of the spraying process.展开更多
The coupling behavior of the imbedded weapon store occurring between the local unsteady flow field round the store and the structure response on the processing of opening its bay-door is simulated by using numerical m...The coupling behavior of the imbedded weapon store occurring between the local unsteady flow field round the store and the structure response on the processing of opening its bay-door is simulated by using numerical method based on computational fluid mechanics(CFD).The transient aerodynamic behaviors when opening door under various flight altitudes and the corresponding structure deformation evolution in the unsteady flow fields are analyzed respectively and presented.The rules of aircraft attitude parameters′impacting to the responses of structure and the bay-door′s opening process are obtained by comparing with the analysis results.These rules can be applied to the structure design of bay-door and route specification of missile when disengaged and launched from within store.展开更多
This paper proposed a high-sensitivity phase imaging eddy current magneto-optical (PI-ECMO) system for carbon fiber reinforced polymer (CFRP) defect detection. In contrast to other eddy current-based detection systems...This paper proposed a high-sensitivity phase imaging eddy current magneto-optical (PI-ECMO) system for carbon fiber reinforced polymer (CFRP) defect detection. In contrast to other eddy current-based detection systems, the proposed system employs a fixed position excitation coil while enabling the detection point to move within the detection region. This configuration effectively mitigates the interference caused by the lift-off effect, which is commonly observed in systems with moving excitation coils. Correspondingly, the relationship between the defect characteristics (orientation and position) and the surface vertical magnetic field distribution (amplitude and phase) is studied in detail by theoretical analysis and numerical simulations. Experiments conducted on woven CFRP plates demonstrate that the designed PI-ECMO system is capable of effectively detecting both surface and internal cracks, as well as impact defects. The excitation current is significantly reduced compared with traditional eddy current magneto-optical (ECMO) systems.展开更多
Combining the design of experiments(DOE)and three-dimensional finite element(3D-FE)method,a sequential multiobjectiveoptimization of larger diameter thin-walled(LDTW)Al-alloy tube bending under uncertainties was propo...Combining the design of experiments(DOE)and three-dimensional finite element(3D-FE)method,a sequential multiobjectiveoptimization of larger diameter thin-walled(LDTW)Al-alloy tube bending under uncertainties was proposed andimplemented based on the deterministic design results.Via the fractional factorial design,the significant noise factors are obtained,viz,variations of tube properties,fluctuations of tube geometries and friction.Using the virtual Taguchi’s DOE of inner and outerarrays,considering three major defects,the robust optimization of LDTW Al-alloy tube bending is achieved and validated.For thebending tools,the robust design of mandrel diameter was conducted under the fluctuations of tube properties,friction and tubegeometry.For the processing parameters,considering the variations of friction,material properties and manufacture deviation ofmandrel,the robust design of mandrel extension length and boosting ratio is realized.展开更多
Aluminum alloy 5 A02 with low plasticity was used as target sheet, and stainless steel SUS304 with good plasticity was used as overlapping sheet to investigate the effect of interface friction on bulging formability a...Aluminum alloy 5 A02 with low plasticity was used as target sheet, and stainless steel SUS304 with good plasticity was used as overlapping sheet to investigate the effect of interface friction on bulging formability and microstructure of target sheet in overlapping sheets bulging process. Sheet sliding experiment was performed to measure interface friction coefficient of 5 A02/SUS304 in different lubricating conditions and normal pressure. Overlapping sheets bulging experiment of 5 A02/SUS304 was carried out to investigate the influence of interface friction on limit bulging height, wall thickness distribution, microstructure and fracture morphology of 5 A02 bulging specimens. The results showed that increase of the interface friction coefficient of 5 A02/SUS304 could effectively improve the limit bulging height and deformation uniformity of 5 A02. And the fracture style of 5 A02 transformed from toughness fracture of dimples-micropores gathered to fault slip separation fracture. Therefore, target sheet bulging formability is improved with the increase of interface friction coefficient.展开更多
In order to improve the present aviation ejection escape system, the application of explosion cutting technique to aviation escape system is proposed to weaken the strength of canopy before ejecting it. A series of mi...In order to improve the present aviation ejection escape system, the application of explosion cutting technique to aviation escape system is proposed to weaken the strength of canopy before ejecting it. A series of mini cutting explosives are designed to investigate the process of splitting PMMA plate. The phenomenon of spallation in PMMA is observed. The effects of different parameters of mini cutting explosives on the cutting depth are obtained. Consequently the appropriate material of half-circular metal covers, explosive types and the ranges of charge quantities are determined. On the other hand, the cutting process of aviation PMMA plate by mini cutting explosives is simulated by means of nonlinear dynamic analysis code LS-DYNA. In finite element analysis,Arbitrary Lagrangian Euler (ALE) algorithm is used to depict the fluid property of high energy explosives. Continuous damage material model is used to simulate the complicate dynamic damage behavior of PMMA due to explosion shock waves. Only sliding contact option is defined to fulfill the fluid-structure interaction between explosives and PMMA plate by distributed parameter methods. Phenomenon of spallation observed in the experiment is presented in the simulation. The relationship between the penetration depth of PMMA plate and charge linear density obtained by numerical simulation agrees well with experimental result.展开更多
In order to research the influence of Zr content ( below 15 wt. % ) on the properties of the filler metal. Ti-5Zr- 15Cu-15Ni-La, Ti-lOZr-15Cu-15Ni-La and Ti-15Zr-15Cu-15Ni-La filler metals were prepared. The wettabi...In order to research the influence of Zr content ( below 15 wt. % ) on the properties of the filler metal. Ti-5Zr- 15Cu-15Ni-La, Ti-lOZr-15Cu-15Ni-La and Ti-15Zr-15Cu-15Ni-La filler metals were prepared. The wettability of the filler metals on Ti-6Al-4V was evaluated and the melting temperatures of the filler metals were tested by differential scanning calorimetry (DSC). The microstructures and mechanical properties of the brazed joints were investigated. The results show that the wettability of the filler metals improves as the Zr content increases. Zr content has great influence on the melting temperature of the filler metals. When Zr content changes from 5 wt. % to 10 wt. % and 15 wt. % , the melting temperature decreases about 80 ℃. The brazed joint with Ti-5Zr-15Cu-15Ni-La filler metal shows aciculate phase on the interfizce. The brazed joints with Ti-lOZr-15Cu-15Ni-La and Ti-15Zr-15Cu-15Ni-La filler metals consist of three zones, a segregated center zonc, diffusion reaction zone and acicular zone. The brazed joint with Ti-5Zr-15Cu-15Ni-La filler metal achieves the maximum shear strength 313.9 MPa.展开更多
Based on the analysis of factors affecting transient temperature field of aircraft fuel tank and coupled heat transfer mechanism, a mathematical model of transient coupled heat transfer, including the dynamic- chan...Based on the analysis of factors affecting transient temperature field of aircraft fuel tank and coupled heat transfer mechanism, a mathematical model of transient coupled heat transfer, including the dynamic- change of fuel quality, the internal heat transfer, the external aerodynamic convection and the radiation heat transfer, is established. Taking the aerodynamic convection and radiation heat transfer outside the tank as the third kinds of thermal boundary conditions for the thermal analysis of the fuel tank, calculation of internal and external coupling heat of fuel tank is decoupled. Ther^nal network method combined with hierarchical dynamic- grid is used to deal with the fuel consumption, and carry on the heat transfer analysis of the fuel tank. The numerical method for the transient temperature field of aircraft fuel tank is established. Through the simulation calculation, the transient temperature distribution of the fuel tank under different flight conditions is obtained, and the influence of the fuel mass and the external thermal environment on the temperature field is analyzed.展开更多
Based on the phenomenon of"split brick by Qigong",a mechanical model for short beam impact is proposed.Combined with the traditional energy method,a theoretical analysis of the impact of the short beam(Timos...Based on the phenomenon of"split brick by Qigong",a mechanical model for short beam impact is proposed.Combined with the traditional energy method,a theoretical analysis of the impact of the short beam(Timoshenko beam)closer to the real situation is made considering the quality and initial deformation.The optimal solution of short beam impact problem of how to choose the position where the short beam is most likely to break is obtained.The finite element numerical analysis and experimental test are used,and the results verify the applicability of the theoretical analysis of the proposed model.展开更多
This paper presents a feature modeling approach to address the 3D structural topology design optimization withfeature constraints. In the proposed algorithm, various features are formed into searchable shape features ...This paper presents a feature modeling approach to address the 3D structural topology design optimization withfeature constraints. In the proposed algorithm, various features are formed into searchable shape features bythe feature modeling technology, and the models of feature elements are established. The feature elements thatmeet the design requirements are found by employing a feature matching technology, and the constraint factorscombined with the pseudo density of elements are initialized according to the optimized feature elements. Then,through controlling the constraint factors and utilizing the optimization criterion method along with the filteringtechnology of independent mesh, the structural design optimization is implemented. The present feature modelingapproach is applied to the feature-based structural topology optimization using empirical data. Meanwhile, theimproved mathematical model based on the density method with the constraint factors and the correspondingsolution processes are also presented. Compared with the traditional method which requires complicated constraintprocessing, the present approach is flexibly applied to the 3D structural design optimization with added holesby changing the constraint factors, thus it can design a structure with predetermined features more directly andeasily. Numerical examples show effectiveness of the proposed feature modeling approach, which is suitable for thepractical engineering design.展开更多
Four hydrogen contents were employed to investigate the effects of hydrogen on fatigue life of Ti 4Al 2V titanium alloy by means of section varied samples. Results reveal that the fatigue life of the materials with (...Four hydrogen contents were employed to investigate the effects of hydrogen on fatigue life of Ti 4Al 2V titanium alloy by means of section varied samples. Results reveal that the fatigue life of the materials with (116~280)×10 -6 hydrogen is higher than that of natural hydrogen material provided that the fatigue load Δ σ is over 550 MPa. At higher Δ σ , the content of hydrogen has small effects on fatigue life within (116280)×10 -6 hydrogen. For material containing 280×10 -6 hydrogen, fatigue cracks tend to initiate at sample edges at higher load, in contrast, to initiate at sites of hydrides at lower load. The interstitial hydrogen atoms softening the persistent slip bands(PSB) and hydrides separating from the body become the cause of decrease in fatigue life. Hydrides resolved into the body is observed at lower Δ σ for material with 280×10 -6 hydrogen, which is the result of concentration of hydrogen atoms at crack tips and stress induced re precipitation of hydrides.展开更多
According to the deformation state in skin stretch forming, an experiment was investigated to determine the critical strain, which make the slip line occur, and the strain criteria under different strain paths are obt...According to the deformation state in skin stretch forming, an experiment was investigated to determine the critical strain, which make the slip line occur, and the strain criteria under different strain paths are obtained. The uniaxial tension tests of different specimens were carried out to determine the critical strains of different strain paths. Then, the slip line limited curve(SLC) is available from these critical strains. Two kinds of aluminum alloys, 2024-T3 and 2524-T3, were studied, and two SLCs are gained. The application of the SLC to an airplane skin stretch forming simulation was investigated, and the results show that the SLC can be used to control the slip lines occurring in practice.展开更多
In recent years,industrial robots have received extensive attention in manufacturing field due to their high flexibility and great workspace.However,the weak stiffness of industrial robots makes it extremely easy to a...In recent years,industrial robots have received extensive attention in manufacturing field due to their high flexibility and great workspace.However,the weak stiffness of industrial robots makes it extremely easy to arouse chatter,which affects machining quality inevitably and generates noise pollution in severe cases.Compared with drilling,the chatter mechanism of robotic countersinking is more complex.The external excitation changes with cutting width and depth in countersinking.This characteristic results in time-varying and nonlinearity of robotic countersinking dynamics.Thus,it is urgent to propose a new method of chatter suppression and provide an accurate stability analysis model.As a new special machining technology,rotary ultrasonic machining has been proved to improve robotic drilling and milling stability effectively.Based on this,robotic rotary ultrasonic countersinking(RRUC)is proposed to improve the robotic countersinking stability in this paper.A three-dimensional stability domain method of RRUC is established.First,the countersinking process was divided intoρparts.The dynamic model of every unit was constructed based on ultrasonic function angle(γ)and dynamic chip area.Then,the stability region of RRUC is obtained based on the semi-discrete method(SDM).Compared with the robotic conventional countersinking(RCC),RRUC improves the stability by 27%.Finally,the correctness and effectiveness of the stability region model are proved by robotic ultrasonic countersinking experiments.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(Nos.62072074,62076054,62027827,62002047)the Sichuan Science and Technology Innovation Platform and Talent Plan(Nos.2020JDJQ0020,2022JDJQ0039)+2 种基金the Sichuan Science and Technology Support Plan(Nos.2020YFSY0010,2022YFQ0045,2022YFS0220,2023YFG0148,2021YFG0131)the YIBIN Science and Technology Support Plan(No.2021CG003)the Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China(Nos.ZYGX2021YGLH212,ZYGX2022YGRH012).
文摘With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle.
基金This work is supported by Demonstration of Scientific and Technology Achievements Transform in Sichuan Province under Grant 2022ZHCG0036National Natural Science Foundation of China(62002047).
文摘Identifying a device and detecting a change in its position is critical for secure devices management in the Internet of Things(IoT).In this paper,a device management system is proposed to track the devices by using audio-based location distinction techniques.In the proposed scheme,traditional cryptographic techniques,such as symmetric encryption algorithm,RSA-based signcryption scheme,and audio-based secure transmission,are utilized to provide authentication,non-repudiation,and confidentiality in the information interaction of the management system.Moreover,an audio-based location distinction method is designed to detect the position change of the devices.Specifically,the audio frequency response(AFR)of several frequency points is utilized as a device signature.The device signature has the features as follows.(1)Hardware Signature:different pairs of speaker and microphone have different signatures;(2)Distance Signature:in the same direction,the signatures are different at different distances;and(3)Direction Signature:at the same distance,the signatures are different in different directions.Based on the features above,amovement detection algorithmfor device identification and location distinction is designed.Moreover,a secure communication protocol is also proposed by using traditional cryptographic techniques to provide integrity,authentication,and non-repudiation in the process of information interaction between devices,Access Points(APs),and Severs.Extensive experiments are conducted to evaluate the performance of the proposed method.The experimental results show that the proposedmethod has a good performance in accuracy and energy consumption.
基金Project(50225518) supported by the National Science Foundation of China for Distinguished Young ScholarsProject(59975076, 50175092) supported by the National Natural Science Foundation of ChinaProject(04H53057) supported by the Aviation Science Foundation of China
文摘Numerical control(NC) bending experiments with different process parameters were carried out for 5052O aluminum alloy tubes with outer diameter of 70 mm, wall thickness of 1.5 mm, and centerline bending radius of 105 mm. And the effects of process parameters on tube wall thinning and cross section distortion were investigated. Meanwhile, acceptable bending of the 5052O aluminum tubes was accomplished based on the above experiments. The results show that the effects of process parameters on bending process for large diameter thin-walled aluminum alloy tubes are similar to those for small diameter thin-walled tubes, but the forming quality of the large diameter thin-walled aluminum alloy tubes is much more sensitive to the process parameters and thus it is more difficult to form.
文摘A finite element model including full-scale circular arc windshield glass and the relative parts of the military plane is established in this paper. The model is analyzed by using an explicit element code LS-DYNA3D for analyzing the nonlinear dynamic response of structures. The data in aspects of displacement, strain, stress and contact force in the process of deformation are obtained. The deformation and failure mechanism of circular arc windshield glass are discussed. The possible location at which failure may take place is given. The valuable data are provided for designing,researching and producing new windshields with high crashworthiness.
基金supported by the Fundamental Research Funds for the Central Universities(Nos.NS2015055,NP2020413)the Administration of the Ministries and Commissions of the Central Government(No.011951G19061)+1 种基金the National Natural Science Foundation of China(No.51105202)the State Administration of P.R.China and the Ministry of Education of P.R.China(No.B16024)
文摘The response surface methodology is used to study the effect of stirring parameters on the mechanical properties of magnesium matrix composites(MMCs).The composites are manufactured using different stirring speeds(500,600,and 700 r/min),stirring time(10,20,and 30 min),and weight fractions(0,2.5%,5%,and10%)of silicon carbide particles.The experimental results show that 700 r/min and 20 min are the best conditions for obtaining the best mechanical properties.Based on the desirability function methodology,the optimum parameter values for the best mechanical characteristics of produced composites are reached at 696.102 r/min,19.889 min,and9.961%(in weight).
基金Sichuan Civil-Military Inosculation Special Fund(ZYF-2017-66).
文摘Background This study aims at addressing the lack of closed-loop feedback optimization enabling tool in aircraft automatic spraying systems;we systematically analyze a three-dimensional(3D)virtual-real mapping technique,namely the digital twin technique,used by the automatic spraying system.Methods With the sensors installed in the spraying system,the spraying working parameters are collected online and are used for driving the 3D virtual spraying system to realize the total-factor monitoring of the spraying operation.Furthermore,the operation-evaluation model is applied for analyzing and managing the key indexes of the spraying quality;once the data value of the key indexes exceeds a threshold,the operation shall be optimized automatically.Results This approach can effectively support the high-efficiency analysis,evaluation,and optimization of the spraying process.
文摘The coupling behavior of the imbedded weapon store occurring between the local unsteady flow field round the store and the structure response on the processing of opening its bay-door is simulated by using numerical method based on computational fluid mechanics(CFD).The transient aerodynamic behaviors when opening door under various flight altitudes and the corresponding structure deformation evolution in the unsteady flow fields are analyzed respectively and presented.The rules of aircraft attitude parameters′impacting to the responses of structure and the bay-door′s opening process are obtained by comparing with the analysis results.These rules can be applied to the structure design of bay-door and route specification of missile when disengaged and launched from within store.
基金the National Natural Science Foundation of China under Grants No.U2030205,No.62003075,No.61903065,and No.62003074Sichuan Science and Technology Planning Project under Grant No.2022JDJQ0040.
文摘This paper proposed a high-sensitivity phase imaging eddy current magneto-optical (PI-ECMO) system for carbon fiber reinforced polymer (CFRP) defect detection. In contrast to other eddy current-based detection systems, the proposed system employs a fixed position excitation coil while enabling the detection point to move within the detection region. This configuration effectively mitigates the interference caused by the lift-off effect, which is commonly observed in systems with moving excitation coils. Correspondingly, the relationship between the defect characteristics (orientation and position) and the surface vertical magnetic field distribution (amplitude and phase) is studied in detail by theoretical analysis and numerical simulations. Experiments conducted on woven CFRP plates demonstrate that the designed PI-ECMO system is capable of effectively detecting both surface and internal cracks, as well as impact defects. The excitation current is significantly reduced compared with traditional eddy current magneto-optical (ECMO) systems.
基金Project(51275415) supported by the National Natural Science Foundation of ChinaProject(51522509) supported by the National Science Fund for Excellent Young Scholars,China
文摘Combining the design of experiments(DOE)and three-dimensional finite element(3D-FE)method,a sequential multiobjectiveoptimization of larger diameter thin-walled(LDTW)Al-alloy tube bending under uncertainties was proposed andimplemented based on the deterministic design results.Via the fractional factorial design,the significant noise factors are obtained,viz,variations of tube properties,fluctuations of tube geometries and friction.Using the virtual Taguchi’s DOE of inner and outerarrays,considering three major defects,the robust optimization of LDTW Al-alloy tube bending is achieved and validated.For thebending tools,the robust design of mandrel diameter was conducted under the fluctuations of tube properties,friction and tubegeometry.For the processing parameters,considering the variations of friction,material properties and manufacture deviation ofmandrel,the robust design of mandrel extension length and boosting ratio is realized.
基金Funded by the National Natural Science Foundation of China(No.51575364)the Program for Liaoning Innovation Talents in University(No.LR2017069)the Shenyang Science and Technology Innovation Support Program for Young Talented People(No.RC180189)
文摘Aluminum alloy 5 A02 with low plasticity was used as target sheet, and stainless steel SUS304 with good plasticity was used as overlapping sheet to investigate the effect of interface friction on bulging formability and microstructure of target sheet in overlapping sheets bulging process. Sheet sliding experiment was performed to measure interface friction coefficient of 5 A02/SUS304 in different lubricating conditions and normal pressure. Overlapping sheets bulging experiment of 5 A02/SUS304 was carried out to investigate the influence of interface friction on limit bulging height, wall thickness distribution, microstructure and fracture morphology of 5 A02 bulging specimens. The results showed that increase of the interface friction coefficient of 5 A02/SUS304 could effectively improve the limit bulging height and deformation uniformity of 5 A02. And the fracture style of 5 A02 transformed from toughness fracture of dimples-micropores gathered to fault slip separation fracture. Therefore, target sheet bulging formability is improved with the increase of interface friction coefficient.
基金Supported by National Natural Science Foundation of China (No. 10572100)Natural Science Foundation of Shanxi Province (No.200410006)
文摘In order to improve the present aviation ejection escape system, the application of explosion cutting technique to aviation escape system is proposed to weaken the strength of canopy before ejecting it. A series of mini cutting explosives are designed to investigate the process of splitting PMMA plate. The phenomenon of spallation in PMMA is observed. The effects of different parameters of mini cutting explosives on the cutting depth are obtained. Consequently the appropriate material of half-circular metal covers, explosive types and the ranges of charge quantities are determined. On the other hand, the cutting process of aviation PMMA plate by mini cutting explosives is simulated by means of nonlinear dynamic analysis code LS-DYNA. In finite element analysis,Arbitrary Lagrangian Euler (ALE) algorithm is used to depict the fluid property of high energy explosives. Continuous damage material model is used to simulate the complicate dynamic damage behavior of PMMA due to explosion shock waves. Only sliding contact option is defined to fulfill the fluid-structure interaction between explosives and PMMA plate by distributed parameter methods. Phenomenon of spallation observed in the experiment is presented in the simulation. The relationship between the penetration depth of PMMA plate and charge linear density obtained by numerical simulation agrees well with experimental result.
文摘In order to research the influence of Zr content ( below 15 wt. % ) on the properties of the filler metal. Ti-5Zr- 15Cu-15Ni-La, Ti-lOZr-15Cu-15Ni-La and Ti-15Zr-15Cu-15Ni-La filler metals were prepared. The wettability of the filler metals on Ti-6Al-4V was evaluated and the melting temperatures of the filler metals were tested by differential scanning calorimetry (DSC). The microstructures and mechanical properties of the brazed joints were investigated. The results show that the wettability of the filler metals improves as the Zr content increases. Zr content has great influence on the melting temperature of the filler metals. When Zr content changes from 5 wt. % to 10 wt. % and 15 wt. % , the melting temperature decreases about 80 ℃. The brazed joint with Ti-5Zr-15Cu-15Ni-La filler metal shows aciculate phase on the interfizce. The brazed joints with Ti-lOZr-15Cu-15Ni-La and Ti-15Zr-15Cu-15Ni-La filler metals consist of three zones, a segregated center zonc, diffusion reaction zone and acicular zone. The brazed joint with Ti-5Zr-15Cu-15Ni-La filler metal achieves the maximum shear strength 313.9 MPa.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51676055 and 51536001)
文摘Based on the analysis of factors affecting transient temperature field of aircraft fuel tank and coupled heat transfer mechanism, a mathematical model of transient coupled heat transfer, including the dynamic- change of fuel quality, the internal heat transfer, the external aerodynamic convection and the radiation heat transfer, is established. Taking the aerodynamic convection and radiation heat transfer outside the tank as the third kinds of thermal boundary conditions for the thermal analysis of the fuel tank, calculation of internal and external coupling heat of fuel tank is decoupled. Ther^nal network method combined with hierarchical dynamic- grid is used to deal with the fuel consumption, and carry on the heat transfer analysis of the fuel tank. The numerical method for the transient temperature field of aircraft fuel tank is established. Through the simulation calculation, the transient temperature distribution of the fuel tank under different flight conditions is obtained, and the influence of the fuel mass and the external thermal environment on the temperature field is analyzed.
基金supported in part by the National College Students Innovation Training Program
文摘Based on the phenomenon of"split brick by Qigong",a mechanical model for short beam impact is proposed.Combined with the traditional energy method,a theoretical analysis of the impact of the short beam(Timoshenko beam)closer to the real situation is made considering the quality and initial deformation.The optimal solution of short beam impact problem of how to choose the position where the short beam is most likely to break is obtained.The finite element numerical analysis and experimental test are used,and the results verify the applicability of the theoretical analysis of the proposed model.
基金This work is supported by the National Natural Science Foundation of China(12002218)the Youth Foundation of Education Department of Liaoning Province(JYT19034).These supports are gratefully acknowledged.
文摘This paper presents a feature modeling approach to address the 3D structural topology design optimization withfeature constraints. In the proposed algorithm, various features are formed into searchable shape features bythe feature modeling technology, and the models of feature elements are established. The feature elements thatmeet the design requirements are found by employing a feature matching technology, and the constraint factorscombined with the pseudo density of elements are initialized according to the optimized feature elements. Then,through controlling the constraint factors and utilizing the optimization criterion method along with the filteringtechnology of independent mesh, the structural design optimization is implemented. The present feature modelingapproach is applied to the feature-based structural topology optimization using empirical data. Meanwhile, theimproved mathematical model based on the density method with the constraint factors and the correspondingsolution processes are also presented. Compared with the traditional method which requires complicated constraintprocessing, the present approach is flexibly applied to the 3D structural design optimization with added holesby changing the constraint factors, thus it can design a structure with predetermined features more directly andeasily. Numerical examples show effectiveness of the proposed feature modeling approach, which is suitable for thepractical engineering design.
文摘Four hydrogen contents were employed to investigate the effects of hydrogen on fatigue life of Ti 4Al 2V titanium alloy by means of section varied samples. Results reveal that the fatigue life of the materials with (116~280)×10 -6 hydrogen is higher than that of natural hydrogen material provided that the fatigue load Δ σ is over 550 MPa. At higher Δ σ , the content of hydrogen has small effects on fatigue life within (116280)×10 -6 hydrogen. For material containing 280×10 -6 hydrogen, fatigue cracks tend to initiate at sample edges at higher load, in contrast, to initiate at sites of hydrides at lower load. The interstitial hydrogen atoms softening the persistent slip bands(PSB) and hydrides separating from the body become the cause of decrease in fatigue life. Hydrides resolved into the body is observed at lower Δ σ for material with 280×10 -6 hydrogen, which is the result of concentration of hydrogen atoms at crack tips and stress induced re precipitation of hydrides.
基金Project(K0604020509) supported by Chengdu Aircraft Industrial Co. Ltd and National Foundation of Research of China
文摘According to the deformation state in skin stretch forming, an experiment was investigated to determine the critical strain, which make the slip line occur, and the strain criteria under different strain paths are obtained. The uniaxial tension tests of different specimens were carried out to determine the critical strains of different strain paths. Then, the slip line limited curve(SLC) is available from these critical strains. Two kinds of aluminum alloys, 2024-T3 and 2524-T3, were studied, and two SLCs are gained. The application of the SLC to an airplane skin stretch forming simulation was investigated, and the results show that the SLC can be used to control the slip lines occurring in practice.
基金the Project on the Technological Leading Talent Teams Led by Frontiers Science Center for Complex Equipment System Dynamics(No.FSCCESD220401)the National Natural Science Foundation of China(No.52075265).
文摘In recent years,industrial robots have received extensive attention in manufacturing field due to their high flexibility and great workspace.However,the weak stiffness of industrial robots makes it extremely easy to arouse chatter,which affects machining quality inevitably and generates noise pollution in severe cases.Compared with drilling,the chatter mechanism of robotic countersinking is more complex.The external excitation changes with cutting width and depth in countersinking.This characteristic results in time-varying and nonlinearity of robotic countersinking dynamics.Thus,it is urgent to propose a new method of chatter suppression and provide an accurate stability analysis model.As a new special machining technology,rotary ultrasonic machining has been proved to improve robotic drilling and milling stability effectively.Based on this,robotic rotary ultrasonic countersinking(RRUC)is proposed to improve the robotic countersinking stability in this paper.A three-dimensional stability domain method of RRUC is established.First,the countersinking process was divided intoρparts.The dynamic model of every unit was constructed based on ultrasonic function angle(γ)and dynamic chip area.Then,the stability region of RRUC is obtained based on the semi-discrete method(SDM).Compared with the robotic conventional countersinking(RCC),RRUC improves the stability by 27%.Finally,the correctness and effectiveness of the stability region model are proved by robotic ultrasonic countersinking experiments.