期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Manipulating Zr/Ti ratio based on phase diagram for large electrocaloric effects with multiple target operation temperatures in PLZT ceramics
1
作者 Junjie Li Ruowei Yin +5 位作者 Zhe Xiong Yizheng Bao Xing Zhang Wenjuan Wu Lezhong Li Yang Bai 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第9期1422-1431,共10页
Ferroelectric phase transition has been identified as a promising avenue for designing high-performanceelectrocaloric materials for zero-emission and solid-state refrigeration. However, extensive research has been lim... Ferroelectric phase transition has been identified as a promising avenue for designing high-performanceelectrocaloric materials for zero-emission and solid-state refrigeration. However, extensive research has been limited todeveloping ferroelectric materials with large electrocaloric effects near room temperature, preventing them from meetingdiverse refrigeration requirements. In this study, by leveraging the room-temperature phase diagram of the (PbLa)(ZrTi)O_(3)solution, we prepared a series of Pb_(0.775)La_(0.15)Zr_(x)Ti_(1−x)O_(3) bulk ceramics spanning the ferroelectric and relaxor ferroelectricphase regions. This enabled the attainment of various phase transition features and temperatures. Finally, largeelectrocaloric effects, coupled with adjustable operation temperatures ranging from 150 to −45℃, are successfullyachieved through manipulation of the Zr/Ti ratio. This comprehensive range of operation temperatures effectively addressesdiverse refrigeration application requirements, ranging from industrial equipment to freezer cabinets. This work not onlyunderscores the expansion of the electrocaloric refrigeration application domain but also proposes a material designstrategy tailored to meet these evolving demands. 展开更多
关键词 electrocaloric effect phase transition phase diagram ferroelectric ceramics
原文传递
Glass modified barium strontium titanate ceramics for energy storage capacitor at elevated temperatures 被引量:11
2
作者 Zong-Yang Shen Yu Wang +6 位作者 Yanxue Tang Yuanying Yu Wen-Qin Luo Xingcai Wang Yueming Li Zhumei Wang Fusheng Song 《Journal of Materiomics》 SCIE EI 2019年第4期641-648,共8页
A glass with composition of B_(2)O_(3)-Bi_(2)O_(3)-SiO_(2)-CaO-BaO-Al_(2)O_(3)-ZrO_(2)(BBSZ)modified Ba_(x)Sr_(1-x)TiO_(3)(BST,x=0.3 and 0.4)ceramics were prepared by a conventional solid state reaction method abided ... A glass with composition of B_(2)O_(3)-Bi_(2)O_(3)-SiO_(2)-CaO-BaO-Al_(2)O_(3)-ZrO_(2)(BBSZ)modified Ba_(x)Sr_(1-x)TiO_(3)(BST,x=0.3 and 0.4)ceramics were prepared by a conventional solid state reaction method abided by a formula of BST+y%BBSZ(y=0,2,4,7,and 10,in mass).The effect of BBSZ glass content on the structure,dielectric properties and energy storage characteristics of the ceramics was investigated.The dielectric constant reduced but the endurable electrical strength enhanced due to the BBSZ glass addition in BST ceramics.In particular,the dielectric loss of the ceramics at elevated temperature(e.g.200℃)can be strongly suppressed from tanδ>20%to tanδ<3% after BBSZ glass modification.For Ba_(0.3)Sr_(0.7)TiO_(3)+2%BBSZ ceramics,an optimized energy storage density(γ=0.63 J/cm^(3))and efficiency(η=91.6%)under an applied electric field of 160 kV/cm was obtained at room temperature.Meanwhile,the temperature dependent polarization-electric field(P-E)hysteresis loops were measured to evaluate the energy storage characteristics of the ceramics potential for high voltage capacitor application at elevated temperatures. 展开更多
关键词 Barium strontium titanate Glass modification Energy storage Ceramic capacitor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部