2,5-bis(hydroxymethyl)furan(BHMF)is an important monomer of polyester.Its oxygen-containing rigid ring structure and symmetrical diol functional group establish it as an alternative to petroleum-based monomer with uni...2,5-bis(hydroxymethyl)furan(BHMF)is an important monomer of polyester.Its oxygen-containing rigid ring structure and symmetrical diol functional group establish it as an alternative to petroleum-based monomer with unique advantages for the prodution of the degradable bio-based polyester materials.Herein,we prepared a boehmite-supported copper-oxide catalyst for the selective hydrogenation of 5-hydroxymethylfurfural into BHMF via catalytic transfer hydrogenation(CTH).Further,ethanol successfully replaced conventional high-pressure hydrogen as the hydrogen donor,with up to 96.9% BHMF selectivity achieved under suitable conditions.Through characterization and factor investigations,it was noted that CuO is crucial for high BHMF selectivity.Furthermore,kinetic studies revealed a higher by-product activation energy compared to that of BHMF,which explained the influence of reaction temperature on product distribution.To establish the catalyst structure-activity correlation,a possible mechanism was proposed.The copper-oxide catalyst deactivated following CTH because ethanol reduced the CuO,which consequently decreased the active sites.Finally,calcination of the catalyst in air recovered its activity.These results will have a positive impact on hydrogenation processes in the biomass industry.展开更多
基金support of the National Natural Science Foundation of China (Grant No.22278121)Scientific Research Fund of Hunan Provincial Education Department (Grant No.20B364)+1 种基金Hunan Provincial Innovation Foundation for Postgraduate (Grant No.QL20210132)Science and Technology Planning Project of Hunan Province (Grant Nos.2021GK5083,2021GK4049,2018TP1017).
文摘2,5-bis(hydroxymethyl)furan(BHMF)is an important monomer of polyester.Its oxygen-containing rigid ring structure and symmetrical diol functional group establish it as an alternative to petroleum-based monomer with unique advantages for the prodution of the degradable bio-based polyester materials.Herein,we prepared a boehmite-supported copper-oxide catalyst for the selective hydrogenation of 5-hydroxymethylfurfural into BHMF via catalytic transfer hydrogenation(CTH).Further,ethanol successfully replaced conventional high-pressure hydrogen as the hydrogen donor,with up to 96.9% BHMF selectivity achieved under suitable conditions.Through characterization and factor investigations,it was noted that CuO is crucial for high BHMF selectivity.Furthermore,kinetic studies revealed a higher by-product activation energy compared to that of BHMF,which explained the influence of reaction temperature on product distribution.To establish the catalyst structure-activity correlation,a possible mechanism was proposed.The copper-oxide catalyst deactivated following CTH because ethanol reduced the CuO,which consequently decreased the active sites.Finally,calcination of the catalyst in air recovered its activity.These results will have a positive impact on hydrogenation processes in the biomass industry.