期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Status and development trend of the welding consumables industry in China 被引量:9
1
作者 Zhang Huiwen Su Jinhua Chen Jian 《China Welding》 EI CAS 2017年第2期23-31,共9页
We analyzed the status and development of the welding consumables industry in China during the 12th Five-Year Plan (2011 -2015) period, and identified the major problems in the industry. We predicted the develop... We analyzed the status and development of the welding consumables industry in China during the 12th Five-Year Plan (2011 -2015) period, and identified the major problems in the industry. We predicted the development trends that are expected for the /3th Five-Year Plan (2016 -2020) period. We suggest some specific countermeasures and practices, which the Chinese welding industry should accelerate the transformation-upgrading and coordinated development of the industry and its firms , should work on improving their overall quality to improve the brand,s influence, enlarge their input into research and technology upgrading,and develop a low-carbon green production mode that could be put in place to promote the development of the Chinese welding consumables industry. 展开更多
关键词 welding consumables development TREND
下载PDF
Microstructure and mechanical properties of twin-wire arc sprayed Ni-Al composite coatings on 6061-T6 aluminum alloy sheet 被引量:7
2
作者 Ji-xiao Wang Jing-shun Liu +2 位作者 Lun-yong Zhang Jian-fei Sun Zhi-ping Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第5期469-478,共10页
We have systematically studied the microstructure and mechanical properties of Ni-5wt%Al and Ni-20wt%Al composite coat- ings fabricated on 6061-T6 aluminum alloy sheet by twin-wire arc spraying under different experim... We have systematically studied the microstructure and mechanical properties of Ni-5wt%Al and Ni-20wt%Al composite coat- ings fabricated on 6061-T6 aluminum alloy sheet by twin-wire arc spraying under different experimental conditions. The abrasive wear be- havior and interface diffusion behavior of the composite coatings were evaluated by dry/wet rubber wheel abrasive wear tests and heat treat- ment, respectively. Experimental results indicate that the composite coatings exhibit features of adhesive wear. Besides, the Vickers micro- hardness of NiA1 and Ni3AI intermetallic compounds is relatively larger than that of the substrate, which is beneficial for enhancing the wear resistance. With the increase of annealing temperature and time, the interface diffusion area between the Ni-Al coating and the substrate gradually expands with the formation of NiAl3 and Ni2Al3 phases, and is controlled by diffusion of aluminum atoms. The grain growth ex- ponent n of diffusion kinetics of the Ni-Al coating, calculated via a high-temperature diffusion model at 400, 480, and 550℃, is between 0.28 and 0.38. This satisfies the cubic law, which is consistent with the general theoretical relationship of high-temperature diffusion. 展开更多
关键词 composite coatings INTERMETALLICS SPRAYING aluminum alloys mechanical properties diffusion
下载PDF
Coating process of multi-material composite sand mold 3D printing 被引量:4
3
作者 Zhong-de Shan Zhi Guo +1 位作者 Dong Du Feng Liu 《China Foundry》 SCIE 2017年第6期498-505,共8页
Sand mold 3 D printing technology is an advanced manufacturing technology which has great flexible manufacturing ability. A multi-material composite sand mold can control the temperature field of metallic parts during... Sand mold 3 D printing technology is an advanced manufacturing technology which has great flexible manufacturing ability. A multi-material composite sand mold can control the temperature field of metallic parts during the pouring process, while the current sand mold 3 D printing technology can only fabricate a single material sand mold. The casting temperature field can not be adjusted by using single sand mold material with isotropous heat exchange ability during the pouring process. In this work, a kind of novel coating device was designed. Multi-material composite sand molds could be manufactured using the coating device according to the casting process demands of the final parts. The influences of curing agent content, coating velocity and scraper shape on compactness and surface roughness of the sand layer(silica sand and zircon sand) were studied. The shapes and sizes of transition intervals of two kinds of sand granules were also tested. The results show that, with the increase of the added volume of curing agent, the compactness of sand layer reduces and the surface roughness value rises. With the increase of the velocity of the coating device, the compactness of sand layer reduces and the surface roughness value rises similarly. In addition, the scraper with a dip angle of 72 degrees could increase the compactness value of the sand layer. The criteria of quality parmeters of the coating procedure are obtained. That is, the surface roughness(δ) of sand layer should be equal to or lesser than half of main size of the sand particles(Dm). The parameter H of the coating device which is the distance between the base of hopper and the surface of sand layer impacts the size of transition zone. The width of the transition zone is in direct proportion to the parameter H, qualitatively. Through the optimization of the coating device, high quality of multi-material sand layers can be obtained. This will provide a solution in manufacturing the multi-material composite sand mold. 展开更多
关键词 multi-material composite sand mold 3D printing coating process self-adaption coating device
下载PDF
Microstructure of Ni–Al powder and Ni–Al composite coatings prepared by twin-wire arc spraying 被引量:3
4
作者 Ji-xiao Wang Gui-xian Wang +5 位作者 Jing-shun Liu Lun-yong Zhang Wei Wang Ze Li Qi-xiang Wang Jian-fei Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第7期810-818,共9页
Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying(TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy(SEM) ... Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying(TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy(SEM) and energy dispersive spectroscopy(EDS). The results showed that the obtained particle size ranged from 5 to 50 μm. The morphology of the Ni–Al powder showed that molten particles were composed of Ni solid solution, NiAl, Ni_3Al, Al_2O_3, and NiO. The Ni–Al phase and a small amount of Al_2O_3 particles changed the composition of the coating. The microstructures of the twin-wire-arc-sprayed Ni–Al composite coatings were characterized by SEM, EDS, X-ray diffraction(XRD), and transmission electron microscopy(TEM). The results showed that the main phase of the Ni-5wt%Al coating consisted of Ni solid solution and Ni Al in addition to a small amount of Al_2O_3. The main phase of the Ni-20wt%Al coating mainly consisted of Ni solid solution, Ni Al, and Ni_3Al in addition to a small amount of Al and Al_2O_3, and Ni Al and Ni_3Al intermetallic compounds effectively further improved the final wear property of the coatings. TEM analysis indicated that fine spherical NiAl_3 precipitates and a Ni–Al–O amorphous phase formed in the matrix of the Ni solid solution in the original state. 展开更多
关键词 spraying powder composite coatings aluminum alloys intermetallics microstructure
下载PDF
Numerical Analysis of Welding Residual Stress and Distortion in Laser+GMAW Hybrid Welding of Aluminum Alloy T-Joint 被引量:13
5
作者 Guoxiang XU Chuansong WU +1 位作者 Xuezhou MA Xuyou WANG 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2013年第3期352-360,共9页
A 3-D finite element model is developed to predict the temperature field and thermally induced residual stress and distortion in laser+GMAW hybrid welding of 6061-T6 aluminum alloy T-joint. And the characteristics of... A 3-D finite element model is developed to predict the temperature field and thermally induced residual stress and distortion in laser+GMAW hybrid welding of 6061-T6 aluminum alloy T-joint. And the characteristics of residual stress distribution and deformation are numerically investigated. In the simulation, the heat source model takes into account the effect of joint geometric shape and welding torch slant on the heat flux distribution and a sequentially coupled thermo-mechanical method is used. The calculated results show that higher residual stress is distributed in and surround the weld zone. Its peak value is very close to the yield strength of base metal. Besides, a large deformation appears in the middle and rear part of the weldment. 展开更多
关键词 Hybrid welding Residual stress Welding distortion Aluminum alloy T-joint Numerical simulation
原文传递
Rapid Manufacturing of Sand Molds by Direct Milling 被引量:2
6
作者 董晓丽 李新亚 +1 位作者 单忠德 刘丰 《Tsinghua Science and Technology》 SCIE EI CAS 2009年第S1期212-215,共4页
Direct milling of sand molds is an important development in rapid manufacturing of sand molds. Direct milling is an effective method for manufacturing single or small batches of cast parts. This paper describes experi... Direct milling of sand molds is an important development in rapid manufacturing of sand molds. Direct milling is an effective method for manufacturing single or small batches of cast parts. This paper describes experimental investigations to find sand blocks with the appropriate strength, to describe wear patterns of different tools (high-speed steel (HSS), carbide, and polycrystalline diamond (PCD) tools), and to analyze sand mold cutting mechanisms. The results show that the PCD tool outperformes the other tools in terms of tool life. Average flank wear and micro-tipping are the dominant tool failure modes in the sand mold milling process. With a flank wear limit of 0.3 mm, the PCD tool works continuously for about 70 h under the experimental conditions. The experimental results show that the cutting mechanism for direct milling sand molds differs from metal cutting. 展开更多
关键词 milling sand molds tool-wear rapid manufacturing cutting mechanism
原文传递
Aerodynamically Assisted Tip-Pen Direct Writing
7
作者 刘丰 张人佶 《Tsinghua Science and Technology》 SCIE EI CAS 2009年第S1期116-119,共4页
Scaffolds require individual external shape and well-defined internal structure, which is of great importance for tissue engineering. Rapid prototyping (RP) uses layer-manufacturing strategies to create physical objec... Scaffolds require individual external shape and well-defined internal structure, which is of great importance for tissue engineering. Rapid prototyping (RP) uses layer-manufacturing strategies to create physical objects and has the advantage on scaffold fabrication. A new RP technology called aerodynamically assisted tip-pen direct writing was developed to construct the complex architectures. Compared with the traditional nozzle, the new nozzle has a micro-tip in the center of the micro-hole. The flow is determined by the gap between the micro-hole and micro-tip, which makes it practical for more accurate flow control. A highly accurate three-dimensional (3-D) micro-positioning system was employed with the new nozzle to deposit maltose structures. 3-D architectures had been made by this method, the width of fiber in which is about 120 μm. The results show that this method provides a possibility to construct 3-D scaffolds with tissue-scale features (i.e., 10-100 μm) without bad influence on the biological activities. 展开更多
关键词 tip-pen direct writing micro fabrication rapid prototyping SCAFFOLD
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部