Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the...Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM.展开更多
To achieve the goals of carbon peaking and carbon neutrality under the backgrounds of poor resource endowments, weak theoretical basis and other factors, the development of the coalbed methane industry of China faces ...To achieve the goals of carbon peaking and carbon neutrality under the backgrounds of poor resource endowments, weak theoretical basis and other factors, the development of the coalbed methane industry of China faces many bottlenecks and challenges. This paper systematically analyzes the coalbed methane resources, key technologies and progress, exploration effect and production performance in China and abroad. The main problems are summarized as low exploration degree, low technical adaptability, low return on investment and small development scale. This study suggests that the coalbed methane industry in China should follow the “two-step”(short-term and long-term) development strategy. The short-term action before 2030, can be divided into two stages:(1) From the present to 2025, to achieve new breakthroughs in theory and technology, and accomplish the target of annual production of 10 billion cubic meters;(2) From 2025 to 2030, to form the technologies suitable for most geological conditions, further expand the industry scale, and achieve an annual output of 30 billion cubic meters, improving the proportion of coalbed methane in the total natural gas production. The long-term action after 2030 is to gradually realize an annual production of 100 billion cubic meters. The strategic countermeasure to achieve the above goals is to adhere to “technology+management dual wheel drive”, realize the synchronous progress of technology and management, and promote the high-quality development of the coalbed methane industry. Technically, the efforts will focus on fine and effective development of coalbed methane in the medium to shallow layers of mature fields, effective development of coalbed methane in new fields, extensive and beneficial development of deep coalbed methane, three-dimensional comingled development of coalbed methane, applying new technologies such as coalbed methane displacement by carbon dioxide, microwave heating and stimulation technology, ultrasonic stimulation, high-temperature heat injection stimulation, rock breaking by high-energy laser. In terms of management, the efforts will focus on coordinative innovation of resource, technology, talent, policy and investment, with technological innovation as the core, to realize an all-round and integrated management and promote the development of coalbed methane industry at a high level.展开更多
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact...Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.展开更多
The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic m...The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic matter(OM)enrichment throughout this period is still controversial.Based on geochemical data,the marine redox conditions,paleogeographic and hydrographic environment,primary productivity,volcanism,and terrigenous input during the Late Permian in the Lower Yangtze region have been studied from the Putaoling section,Chaohu,to provide new insights into OM accumulation.Five Phases are distinguished based on the TOC and environmental variations.In Phase I,anoxic conditions driven by water restriction enhanced OM preservation.In Phase II,euxinic and cycling hydrological environments were the two most substantial controlling factors for the massive OM deposition.During Phase III,intensified terrestrial input potentially diluted the OM in sediment and the presence of oxygen in bottom water weakened the preservation condition.Phase IV was characterized by a relatively higher abundance of mercury(Hg)and TOC(peak at 16.98 wt%),indicating that enhanced volcanism potentially stimulated higher productivity and a euxinic environment.In Phase V,extremely lean OM was preserved as a result of terrestrial dilutions and decreasing primary productivity.Phases I,II and IV are characterized as the most prominent OM-rich zones due to the effective interactions of the controlling factors,namely paleogeographic,hydrographic environment,volcanism,and redox conditions.展开更多
Based on the productivity equation of coalbed methane (CBM) well, considering the impact of coal reservoir reformability on gas well productivity, the main production layer optimization index in the “three-step metho...Based on the productivity equation of coalbed methane (CBM) well, considering the impact of coal reservoir reformability on gas well productivity, the main production layer optimization index in the “three-step method” of optimal combination of production layers is corrected, and then the CBM production layer potential index is introduced to evaluate favorable areas for commingled multi-coal seam production. Through analysis of the key parameters of coal reservoirs affecting the CBM productivity index, a development unit division method for areas with multi-coal seams is established, and a quantitative grading index system is proposed. On this basis, the evaluation process of CBM development favorable area is developed: the mature 3-D modeling technology is used to characterize the reservoir physical properties of multi-coal seams in full-scale;the production layer potential index of each grid is calculated, and the production layer potential index contour under single-layer or commingled multi-layer production are plotted;according to the distribution of the contour of production layer potential index, the quantitative index of CBM development unit is adopted to outline the grade I, II, III coal reservoir distribution areas, and thus to pick out the favorable development areas. The practical application in the Yuwang block of Laochang in Yunnan proved that the favorable area evaluation process proposed can effectively overcome the defects of selecting favorable development areas only relying on evaluation results of a major coal seam pay, and enhance the accuracy of the evaluation results, meeting the requirements of selecting favorable areas for multi-coal seam commingled CBM production.展开更多
As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs us...As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs usually have the characteristics of rich adsorbed gas and obvious dynamic changes of porosity and permeability.A generalized material balance equation and the corresponding reserve evaluation method considering all the mechanisms for both shale gas reservoirs and CBM reservoirs are necessary.In this work,a generalized material balance equation(GMBE)considering the effects of critical desorption pressure,stress sensitivity,matrix shrinkage,water production,water influx,and solubility of natural gas in water is established.Then,by converting the GMBE to a linear relationship between two parameter groups related with known formation/fluid properties and dynamic performance data,the straight-line reserve evaluation method is proposed.By using the slope and the y-intercept of this straight line,the original adsorbed gas in place(OAGIP),original free gas in place(OFGIP),original dissolved gas in place(ODGIP),and the original gas in place(OGIP)can be quickly calculated.Third,two validation cases for shale gas reservoir and CBM reservoir are conducted using commercial reservoir simulator and the coalbed methane dynamic performance analysis software,respectively.Finally,two field studies in the Fuling shale gas field and the Baode CBM field are presented.Results show that the GMBE and the corresponding straight-line reserve evaluation method are rational,accurate,and effective for both shale gas reservoirs and CBM reservoirs.More detailed information about reserves of shale gas and CBM reservoirs can be clarified,and only the straight-line fitting approach is used to determine all kinds of reserves without iteration,proving that the proposed method has great advantages compared with other current methods.展开更多
Based on the tortuous capillary network model,the relationship between anisotropic permeability and rock normal strain,namely the anisotropic dynamic permeability model(ADPM),was derived and established.The model was ...Based on the tortuous capillary network model,the relationship between anisotropic permeability and rock normal strain,namely the anisotropic dynamic permeability model(ADPM),was derived and established.The model was verified using pore-scale flow simulation.The uniaxial strain process was calculated and the main factors affecting permeability changes in different directions in the deformation process were analyzed.In the process of uniaxial strain during the exploitation of layered oil and gas reservoirs,the effect of effective surface porosity on the permeability in all directions is consistent.With the decrease of effective surface porosity,the sensitivity of permeability to strain increases.The sensitivity of the permeability perpendicular to the direction of compression to the strain decreases with the increase of the tortuosity,while the sensitivity of the permeability in the direction of compression to the strain increases with the increase of the tortuosity.For layered reservoirs with the same initial tortuosity in all directions,the tortuosity plays a decisive role in the relative relationship between the variations of permeability in all directions during pressure drop.When the tortuosity is less than 1.6,the decrease rate of horizontal permeability is higher than that of vertical permeability,while the opposite is true when the tortuosity is greater than 1.6.This phenomenon cannot be represented by traditional dynamic permeability model.After the verification by experimental data of pore-scale simulation,the new model has high fitting accuracy and can effectively characterize the effects of deformation in different directions on the permeability in all directions.展开更多
In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the ind...In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the industrial and academic circles on this new type of unconventional natural gas,this paper defines the concept of"coal-rock gas"on the basis of previous studies,and systematically analyzes its characteristics of occurrence state,transport and storage form,differential accumulation,and development law.Coal-rock gas,geologically unlike coalbed methane in the traditional sense,occurs in both free and adsorbed states,with free state in abundance.It is generated and stored in the same set of rocks through short distance migration,occasionally with the accumulation from other sources.Moreover,coal rock develops cleat fractures,and the free gas accumulates differentially.The coal-rock gas reservoirs deeper than 2000 m are high in pressure,temperature,gas content,gas saturation,and free-gas content.In terms of development,similar to shale gas and tight gas,coal-rock gas can be exploited by natural formation energy after the reservoirs connectivity is improved artificially,that is,the adsorbed gas is desorbed due to pressure drop after the high-potential free gas is recovered,so that the free gas and adsorbed gas are produced in succession for a long term without water drainage for pressure drop.According to buried depth,coal rank,pressure coefficient,reserves scale,reserves abundance and gas well production,the classification criteria and reserves/resources estimation method of coal-rock gas are presented.It is preliminarily estimated that the coal-rock gas in place deeper than 2000 m in China exceeds 30×10^(12)m^(3),indicating an important strategic resource for the country.The Ordos,Sichuan,Junggar and Bohai Bay basins are favorable areas for large-scale enrichment of coal-rock gas.The paper summarizes the technical and management challenges and points out the research directions,laying a foundation for the management,exploration,and development of coal-rock gas in China.展开更多
Currently,limited studies of immiscible water-alternating-CO_(2)(imWACO_(2))flooding focus on the impact of reservoir heterogeneity on reservoir development outcomes.Given this,using the heterogeneous reservoirs in th...Currently,limited studies of immiscible water-alternating-CO_(2)(imWACO_(2))flooding focus on the impact of reservoir heterogeneity on reservoir development outcomes.Given this,using the heterogeneous reservoirs in the Gao 89-1 block as a case study,this study conducted slab core flooding experiments and numerical simulations to assess the impact of reservoir heterogeneity on imWACO_(2)flooding efficiency.It can be concluded that imWACO_(2)flooding can enhance the sweep volume and oil recovery compared to continuous CO_(2)flooding.As the permeability difference increases,the difference in the swept volume between zones/layers with relatively high and low permeability increases.To optimize the exploitation of reservoirs in the Gao 89-1 block,the optimal timing and CO_(2)injection rate for imWACO_(2)flooding are determined at water cut of 40%and 10000 m^(3)/d,respectively.A short injection-production semi-period,combined with multiple cycles of water and CO_(2)injection alternations,is beneficial for enhanced oil recovery from imWACO_(2)flooding.展开更多
Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information...Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information of coal-bearing reservoir on seismic data. Previous researchers have studied the reservoir by stripping or weakening the strong reflection, but it is difficult to determine the effectiveness of the remaining reflection seismic data. In this paper, through the establishment of 2D forward model of coal-bearing strata, the corresponding geophysical characteristics of different reflection types of coal-bearing strata are analyzed, and then the favorable sedimentary facies zones for reservoir development are predicted. On this basis, combined with seismic properties, the coal-bearing reservoir is quantitatively characterized by seismic inversion. The above research shows that the Taiyuan formation in LS block of Ordos Basin is affected by coals and forms three or two peaks in different locations. The reservoir plane sedimentary facies zone is effectively characterized by seismic reflection structure. Based on the characteristics of sedimentary facies belt and petrophysical analysis, the reservoir is semi quantitatively characterized by attribute analysis and waveform indication, and quantitatively characterized by pre stack geostatistical inversion. Based on the forward analysis of coal measure strata, this technology characterizes the reservoir facies belt through seismic reflection characteristics, and describes coal measure reservoirs step by step. It effectively guides the exploration of LS block in Ordos Basin, and has achieved good practical application effect.展开更多
Determining the process of densification and tectonic evolution of tight sandstone can help to understand the distribution of reservoirs and find relatively high-permeability areas.Based on integrated approaches of th...Determining the process of densification and tectonic evolution of tight sandstone can help to understand the distribution of reservoirs and find relatively high-permeability areas.Based on integrated approaches of thin section,scanning electron microscopy(SEM),cathode luminescence(CL),nuclear magnetic resonance(NMR),X-ray diffraction(XRD),N2 porosity and permeability,micro-resistivity imaging log(MIL)and three-dimensional seismic data analysis,this work discussed the reservoir characteristics of the member 8 of the Permian Xiashihezi Formation(He 8 sandstones)in the Linxing area of eastern Ordos Basin,determined the factors affecting reservoir quality,and revealed the formation mechanism of relatively high-permeability areas.The results show that the He 8 sandstones in the Linxing area are mainly composed of feldspathic litharenites,and are typical tight sandstones(with porosity<10%and permeability<1 mD accounting for 80.3%of the total samples).Rapid burial is the main reason for reservoir densification,which resulted in 61%loss of the primary porosity.In this process,quartz protected the original porosity by resisting compaction.The cementation(including carbonate,clay mineral and siliceous cementation)further densified the sandstone reservoirs,reducing the primary porosity with an average value of 28%.The calcite formed in the eodiagenesis occupied intergranular pores and affected the formation of the secondary pores by preventing the later fluid intrusion,and the Fe-calcite formed in the mesodiagenetic stage densified the sandstones further by filling the residual intergranular pores.The clay minerals show negative effects on reservoir quality,however,the chlorite coatings protected the original porosity by preventing the overgrowth of quartz.The dissolution of feldspars provides extensive intergranular pores which constitute the main pore type,and improves the reservoir quality.The tectonic movements play an important role in improving the reservoir quality.The current tectonic traces of the study area are mainly controlled by the Himalayan movement,and the high-permeability reservoirs are mainly distributed in the anticline areas.Additionally,the improvement degree(by tectonic movements)of reservoir quality is partly controlled by the original composition of the sandstones.Thus,the selection of potential tight gas well locations in the study area should be focused on the anticline areas with relatively good original reservoir quality.And the phenomena can be referenced for other fluvial tight sandstone basins worldwide.展开更多
It is of great significance to forecast high yield of CBM wells and analyze dynamic production by having an overall study on the characteristics of the produced CBM and determining the main factors influencing the pro...It is of great significance to forecast high yield of CBM wells and analyze dynamic production by having an overall study on the characteristics of the produced CBM and determining the main factors influencing the productivity of CBM. With the test report and the related geological parameters of a single well, methods of combining the productivity data and typical production curves were used to analyze different geological factors and how to influence the capacity of a single layer. Then, the paper proposed a new understanding about capacity characteristics of the study area and geological control factors: First, the Shanxi formation production capacity characteristics was divided into two-stages, showing signs of gas and gas break- through for 100 days. Second, two parameters, which include potential of gas production and gas production capacity, were bet- ter than the single parameter, such as gas content, coal thickness, and penetration to analyze affecting factors of single well pro- duction. Finally, comprehensive analysis concluded that the ratio of critical desorption pressure to reservoir pressure has greater influence on the production of vertical CBM wells. Besides, the potential of gas production capacity has greater impact at stage of showing gas signs; the coal reservoir pressure and gas production capacity have greater impact at stage of gas breakthrough for 100 days. Thus, to seek the coal bed methane with high ratio of critical desorption pressure to reservoir pressure and high yield of gas will be important guarantee to the success of the coal bed methane exploration and development.展开更多
Objective Authigenic pyrite often develops extensively in marine sediments,which is an important product of sulfate reduction in an anoxic environment.It has a specific appearance and complicated sulfur isotopic prope...Objective Authigenic pyrite often develops extensively in marine sediments,which is an important product of sulfate reduction in an anoxic environment.It has a specific appearance and complicated sulfur isotopic properties,and acts as important evidence of methane seep in marine sediments.Strong AOM(anaerobic oxidation of methane)activity has developed in the Okinawa Trough.展开更多
The multiple linear regression equations for adsorption ratio of CO2/CH4 and its coal quality indexes were built with SPSS software on basis of existing coal quality data and its adsorption amount of CO2 and OH4. The ...The multiple linear regression equations for adsorption ratio of CO2/CH4 and its coal quality indexes were built with SPSS software on basis of existing coal quality data and its adsorption amount of CO2 and OH4. The regression equations built were tested with data collected from some s, and the influences of coal quality indexes on adsorption ratio of CO2/CH4 were studied with investigation of regression equations. The study results show that the regression equation for adsorption ratio of CO2/CH4 and volatile matter, ash and moisture in coal can be obtained with multiple linear regression analysis, that the influence of same coal quality index with the degree of metamorphosis or influence of coal quality indexes for same coal rank on adsorption ratio is not consistent.展开更多
Tight sandstone gas in the Linxing Block, eastern Ordos Basin, has been successfully exploited. The high performance is mainly a result of the special geological conditions. The key geological controls for high produc...Tight sandstone gas in the Linxing Block, eastern Ordos Basin, has been successfully exploited. The high performance is mainly a result of the special geological conditions. The key geological controls for high production have been discussed on the basis of seismic data, field observation, sample features, mercury porosimetry, mechanical properties, and basin modeling. Firstly, the coal measures have good gas generation potential, not only because of the existence of coalbeds and organic-rich shales, but also because coal laminae and microbial mats in the shales significantly increase their total organic carbon(TOC) contents. Secondly, except for the uplifted zone of the Zijinshan complex and the eastern fault zone, rare large faults develop in the Carboniferous–Permian sequence, ensuing the sealing capacity of cap rock. Small fractures generally concentrated in the sandstones rather than the mudstones. Thirdly, gas accumulation in the Linxing Block was controlled by the tectonic, burial and thermal histories. Gas accumulation in the Linxing Block started in the Late Triassic, followed by three short pauses of thermal maturation caused by relatively small uplifts;the maximum hydrocarbon generation period is the Early Cetaceous as a combined result of regional and magmatic thermal metamorphisms. Field profiles show abundant fractures in sandstone beds but rare fractures in mudstone beds. Mechanical properties, determined by lithostratigraphy, confine the fractures in the sandstones, increasing the permeability of sandstone reservoirs and retaining the sealing capacity of the mudstone cap rocks. The modern ground stress conditions favor the opening of predominant natural fractures in the NNW-SSE and N-S directions. These conclusions are useful for exploring the potential tight sandstone gas field.展开更多
Understanding the distribution of in-situ stresses is extremely important in a wide range of fields such as oil and gas exploration and development, CO2 sequestration, borehole stability, and stress-related geohazards...Understanding the distribution of in-situ stresses is extremely important in a wide range of fields such as oil and gas exploration and development, CO2 sequestration, borehole stability, and stress-related geohazards assessment. In the present study, the in-situ stress distribution in the Linxing area of eastern Ordos Basin, China, was analyzed based on well tested parameters. The maximum horizontal principal stress (SHmax), minimum horizontal principal stress (Shmin), and vertical stress (Sv) were calculated, and they were linearly correlated with burial depth. In general, two types of in-situ stress fields were determined in the Linxing area: (i) the in-situ stress state followed the relation Sv 〉 Snmax 〉 Shmin in shallow layers with burial depths of less than about 940 m, indicating a normal faulting stress regime; (ii) the Snmax magnitude increased conspicuously and was greater than the Sv magnitude in deep layers with depths more than about 940 m, and the in-situ stress state followed the relation Snmax 〉 Sv 〉 Shmin, demonstrating a strike-slip faulting stress regime. The horizontal differential stress (Snmax-Shmtn) increased with burial depth, indicating that wellbore instability may be a potentially significant problem when drilling deep vertical wells. The lateral stress coefficient ranged from 0.73 to 1.08 with an average of 0.93 in the Linxing area. The coalbed methane (CBM) reservoir permeability was also analyzed. No obvious exponential relationship was found between coal permeability and effective in-situ stress magnitude. Coal permeability was relatively high under a larger effective in-situ stress magnitude. Multiple factors, including fracture development, contribute to the variation of CBM reservoir permeability in the Linxing area of eastern Ordos Basin.展开更多
In order to overcome the deficiencies of current methods for the prediction of the productivity of shale gas hor-izontal wells after fracturing,a new sophisticated approach is proposed in this study.This new model stem...In order to overcome the deficiencies of current methods for the prediction of the productivity of shale gas hor-izontal wells after fracturing,a new sophisticated approach is proposed in this study.This new model stems from the combination several techniques,namely,artificial neural network(ANN),particle swarm optimization(PSO),Imperialist Competitive Algorithms(ICA),and Ant Clony Optimization(ACO).These are properly implemented by using the geological and engineering parameters collected from 317 wells.The results show that the optimum PSO-ANN model has a high accuracy,obtaining a R2 of 0.847 on the testing.The partial dependence plots(PDP)indicate that liquid consumption intensity and the proportion of quartz sand are the two most sensitive factors affecting the model’s performance.展开更多
The permeability and its horizontal anisotropy induce a critical influence on staged CH_(4) output inhibition process.However,a quantitative evaluation of this influence has been rarely reported in the literature.In t...The permeability and its horizontal anisotropy induce a critical influence on staged CH_(4) output inhibition process.However,a quantitative evaluation of this influence has been rarely reported in the literature.In this work,the impact of horizontal anisotropic permeability on CO_(2)-ECBM was numerically investigated.The variation in the staged CH_(4) output inhibition was analyzed.The ideal displacement profile of the CO_(2)-ECBM process was established for the first time.Moreover,the variation in CH_(4) output of different wellbores was discussed.The results showed that 1)low-permeable or weak-anisotropic reservoirs were not conducive to enhanced CH_(4) recovery owing to long inhibition time(>1091 days)and high inhibition level(>36.9%).As permeability and anisotropy increased,due to the accelerated seepage of free water,the hysteresis time and inhibition time could decrease to as short as 5 days and 87 days,respectively,and the inhibition level could weaken to as low as 5.00%.Additionally,the CH_(4) output and CO_(2) injection could increase significantly.2)Nevertheless,high permeability and strong anisotropy easily induced CO_(2) breakthrough,resulting in lower CH_(4) production,CO_(2) injection and CO_(2) storage than expected.While maintaining high efficiency of CO_(2) storage(>99%),upregulating CO_(2) breakthrough concentration from 10%to 20%might ease the unfavorable trend.3)Along the direction of fluid flow,the ideal displacement profile consisted of CO_(2) enriched bank,CO_(2) and CH_(4) mixed bank,CH_(4) enriched bank,and water enriched bank,whereas a remarkable gap in the displacement profiles of the dominant and non-dominant seepage directions was observed.4)The potential of CH_(4) output might vary greatly among different wellbores.The producers along the dominant seepage direction held more potential for CH_(4) recovery in the short-term,while those along the non-dominant seepage direction avoided becoming invalid only if a long-time injection measure was taken for the injectors.These findings pave the way to understand fluid seepage in real complex reservoirs during CO_(2)-ECBM and conduct further field projects.展开更多
The transmission medium of natural gas gathering and transportation pipelines usually contains cor-rosive gases,which will cause serious corrosion on the inner wall of the pipelines when they coexist with water.Theref...The transmission medium of natural gas gathering and transportation pipelines usually contains cor-rosive gases,which will cause serious corrosion on the inner wall of the pipelines when they coexist with water.Therefore,it is necessary to add corrosion inhibitor to form a protective film to protect the pipeline.The distribution of corrosion inhibitors in a gathering and transportation pipeline in Moxi gas field was studied by combining experiment and simulation.The Pearson function was used to calculate the experimental and simulation results,and the correlation was more than 80%,indicating a high degree of agreement.The simulation results show that:①The larger the pipe angle,filling speed and gas flow rate,the smaller the particle size,the better the distribution of corrosion inhibitor particles in the pipe.The filling amount will affect the concentration,but the distribution trend is unchanged;②A method to determine the filling mode based on the loss was proposed,and for this pipeline,the loss of corrosion inhibitor was determined to be 5.31×10^(-3) kg/s,and the flling amount was recommended to be adjusted to 2o L/h,which has certain guiding significance for the actual flling strategy of pipeline corrosion inhibitor.展开更多
The gas-water distribution and production heterogeneity of tight gas reservoirs have been summarized from experimental and geological observations, but the charging and accumulation mechanisms have not been examined q...The gas-water distribution and production heterogeneity of tight gas reservoirs have been summarized from experimental and geological observations, but the charging and accumulation mechanisms have not been examined quantitatively by mathematical model. The tight gas charging and accumulation mechanisms were revealed from a combination of physical simulation of nuclear magnetic resonance coupling displacement, numerical simulation considering material and mechanical equilibria, as well as actual geological observation. The results show that gas migrates into tight rocks to preferentially form a gas saturation stabilization zone near the source-reservoir interface. When the gas source is insufficient, gas saturation reduction zone and uncharged zone are formed in sequence from the source-reservoir interface. The better the source rock conditions with more gas expulsion volume and higher overpressure, the thicker the gas saturation stabilization and reduction zones, and the higher the overall gas saturation. When the source rock conditions are limited, the better the tight reservoir conditions with higher porosity and permeability as well as larger pore throat, the thinner the gas saturation stabilization and reduction zones, but the gas saturation is high. The sweet spot of tight gas is developed in the high-quality reservoir near the source rock, which often corresponds to the gas saturation stabilization zone. The numerical simulation results by mathematical model agree well with the physical simulation results by nuclear magnetic resonance coupling displacement, and reasonably explain the gas-water distribution and production pattern of deep reservoirs in the Xujiaweizi fault depression of the Songliao Basin and tight gas reservoirs in the Linxing-Huangfu area of the Ordos Basin.展开更多
基金Supported by the National Natural Science Foundation of China Project(52274014)Comprehensive Scientific Research Project of China National Offshore Oil Corporation(KJZH-2023-2303)。
文摘Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM.
基金Supported by the China National Science and Technology Major Project (2016ZX05042)。
文摘To achieve the goals of carbon peaking and carbon neutrality under the backgrounds of poor resource endowments, weak theoretical basis and other factors, the development of the coalbed methane industry of China faces many bottlenecks and challenges. This paper systematically analyzes the coalbed methane resources, key technologies and progress, exploration effect and production performance in China and abroad. The main problems are summarized as low exploration degree, low technical adaptability, low return on investment and small development scale. This study suggests that the coalbed methane industry in China should follow the “two-step”(short-term and long-term) development strategy. The short-term action before 2030, can be divided into two stages:(1) From the present to 2025, to achieve new breakthroughs in theory and technology, and accomplish the target of annual production of 10 billion cubic meters;(2) From 2025 to 2030, to form the technologies suitable for most geological conditions, further expand the industry scale, and achieve an annual output of 30 billion cubic meters, improving the proportion of coalbed methane in the total natural gas production. The long-term action after 2030 is to gradually realize an annual production of 100 billion cubic meters. The strategic countermeasure to achieve the above goals is to adhere to “technology+management dual wheel drive”, realize the synchronous progress of technology and management, and promote the high-quality development of the coalbed methane industry. Technically, the efforts will focus on fine and effective development of coalbed methane in the medium to shallow layers of mature fields, effective development of coalbed methane in new fields, extensive and beneficial development of deep coalbed methane, three-dimensional comingled development of coalbed methane, applying new technologies such as coalbed methane displacement by carbon dioxide, microwave heating and stimulation technology, ultrasonic stimulation, high-temperature heat injection stimulation, rock breaking by high-energy laser. In terms of management, the efforts will focus on coordinative innovation of resource, technology, talent, policy and investment, with technological innovation as the core, to realize an all-round and integrated management and promote the development of coalbed methane industry at a high level.
基金Supported by the PetroChina Science and Technology Innovation Fund Project(2021DQ02-1003)Basic Research Project for Central Universities(2022JCCXDC02).
文摘Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.
基金supported by the Fundamental and Commonwealth Geological Survey of Oil and Gas of China(Grant No.DD 20221662)the National Natural Science Foundation of China(NSFC)Program(Grant No.42302124).
文摘The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic matter(OM)enrichment throughout this period is still controversial.Based on geochemical data,the marine redox conditions,paleogeographic and hydrographic environment,primary productivity,volcanism,and terrigenous input during the Late Permian in the Lower Yangtze region have been studied from the Putaoling section,Chaohu,to provide new insights into OM accumulation.Five Phases are distinguished based on the TOC and environmental variations.In Phase I,anoxic conditions driven by water restriction enhanced OM preservation.In Phase II,euxinic and cycling hydrological environments were the two most substantial controlling factors for the massive OM deposition.During Phase III,intensified terrestrial input potentially diluted the OM in sediment and the presence of oxygen in bottom water weakened the preservation condition.Phase IV was characterized by a relatively higher abundance of mercury(Hg)and TOC(peak at 16.98 wt%),indicating that enhanced volcanism potentially stimulated higher productivity and a euxinic environment.In Phase V,extremely lean OM was preserved as a result of terrestrial dilutions and decreasing primary productivity.Phases I,II and IV are characterized as the most prominent OM-rich zones due to the effective interactions of the controlling factors,namely paleogeographic,hydrographic environment,volcanism,and redox conditions.
基金Supported by the National Natural Science Foundation of China(No.41772155)the National Science and Technology Major Project of China(No.2016ZX05044-002)the Fundamental Research Funds for the Central Universities of China(No.2015XKZD07)
文摘Based on the productivity equation of coalbed methane (CBM) well, considering the impact of coal reservoir reformability on gas well productivity, the main production layer optimization index in the “three-step method” of optimal combination of production layers is corrected, and then the CBM production layer potential index is introduced to evaluate favorable areas for commingled multi-coal seam production. Through analysis of the key parameters of coal reservoirs affecting the CBM productivity index, a development unit division method for areas with multi-coal seams is established, and a quantitative grading index system is proposed. On this basis, the evaluation process of CBM development favorable area is developed: the mature 3-D modeling technology is used to characterize the reservoir physical properties of multi-coal seams in full-scale;the production layer potential index of each grid is calculated, and the production layer potential index contour under single-layer or commingled multi-layer production are plotted;according to the distribution of the contour of production layer potential index, the quantitative index of CBM development unit is adopted to outline the grade I, II, III coal reservoir distribution areas, and thus to pick out the favorable development areas. The practical application in the Yuwang block of Laochang in Yunnan proved that the favorable area evaluation process proposed can effectively overcome the defects of selecting favorable development areas only relying on evaluation results of a major coal seam pay, and enhance the accuracy of the evaluation results, meeting the requirements of selecting favorable areas for multi-coal seam commingled CBM production.
基金supported by Science and Technology Major Project of Shanxi Province,China(No.20201101002)Science and Technology Major Project of China,China(No.2016ZX05043002)+1 种基金National Natural Science Foundation Project of China,China(No.51874319)Science Foundation of China University of Petroleum(Beijing),China(No.2462020QNXZ003)to support part of this work
文摘As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs usually have the characteristics of rich adsorbed gas and obvious dynamic changes of porosity and permeability.A generalized material balance equation and the corresponding reserve evaluation method considering all the mechanisms for both shale gas reservoirs and CBM reservoirs are necessary.In this work,a generalized material balance equation(GMBE)considering the effects of critical desorption pressure,stress sensitivity,matrix shrinkage,water production,water influx,and solubility of natural gas in water is established.Then,by converting the GMBE to a linear relationship between two parameter groups related with known formation/fluid properties and dynamic performance data,the straight-line reserve evaluation method is proposed.By using the slope and the y-intercept of this straight line,the original adsorbed gas in place(OAGIP),original free gas in place(OFGIP),original dissolved gas in place(ODGIP),and the original gas in place(OGIP)can be quickly calculated.Third,two validation cases for shale gas reservoir and CBM reservoir are conducted using commercial reservoir simulator and the coalbed methane dynamic performance analysis software,respectively.Finally,two field studies in the Fuling shale gas field and the Baode CBM field are presented.Results show that the GMBE and the corresponding straight-line reserve evaluation method are rational,accurate,and effective for both shale gas reservoirs and CBM reservoirs.More detailed information about reserves of shale gas and CBM reservoirs can be clarified,and only the straight-line fitting approach is used to determine all kinds of reserves without iteration,proving that the proposed method has great advantages compared with other current methods.
基金Supported by the National Natural Science Foundation of China(52274048)Beijing Natural Science Foundation Project of China(3222037)Shaanxi Provincial Technical Innovation Project of China(2023-YD-CGZH-02).
文摘Based on the tortuous capillary network model,the relationship between anisotropic permeability and rock normal strain,namely the anisotropic dynamic permeability model(ADPM),was derived and established.The model was verified using pore-scale flow simulation.The uniaxial strain process was calculated and the main factors affecting permeability changes in different directions in the deformation process were analyzed.In the process of uniaxial strain during the exploitation of layered oil and gas reservoirs,the effect of effective surface porosity on the permeability in all directions is consistent.With the decrease of effective surface porosity,the sensitivity of permeability to strain increases.The sensitivity of the permeability perpendicular to the direction of compression to the strain decreases with the increase of the tortuosity,while the sensitivity of the permeability in the direction of compression to the strain increases with the increase of the tortuosity.For layered reservoirs with the same initial tortuosity in all directions,the tortuosity plays a decisive role in the relative relationship between the variations of permeability in all directions during pressure drop.When the tortuosity is less than 1.6,the decrease rate of horizontal permeability is higher than that of vertical permeability,while the opposite is true when the tortuosity is greater than 1.6.This phenomenon cannot be represented by traditional dynamic permeability model.After the verification by experimental data of pore-scale simulation,the new model has high fitting accuracy and can effectively characterize the effects of deformation in different directions on the permeability in all directions.
基金Supported by the Prospective and Basic Research Project of PetroChina(2021DJ23)。
文摘In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the industrial and academic circles on this new type of unconventional natural gas,this paper defines the concept of"coal-rock gas"on the basis of previous studies,and systematically analyzes its characteristics of occurrence state,transport and storage form,differential accumulation,and development law.Coal-rock gas,geologically unlike coalbed methane in the traditional sense,occurs in both free and adsorbed states,with free state in abundance.It is generated and stored in the same set of rocks through short distance migration,occasionally with the accumulation from other sources.Moreover,coal rock develops cleat fractures,and the free gas accumulates differentially.The coal-rock gas reservoirs deeper than 2000 m are high in pressure,temperature,gas content,gas saturation,and free-gas content.In terms of development,similar to shale gas and tight gas,coal-rock gas can be exploited by natural formation energy after the reservoirs connectivity is improved artificially,that is,the adsorbed gas is desorbed due to pressure drop after the high-potential free gas is recovered,so that the free gas and adsorbed gas are produced in succession for a long term without water drainage for pressure drop.According to buried depth,coal rank,pressure coefficient,reserves scale,reserves abundance and gas well production,the classification criteria and reserves/resources estimation method of coal-rock gas are presented.It is preliminarily estimated that the coal-rock gas in place deeper than 2000 m in China exceeds 30×10^(12)m^(3),indicating an important strategic resource for the country.The Ordos,Sichuan,Junggar and Bohai Bay basins are favorable areas for large-scale enrichment of coal-rock gas.The paper summarizes the technical and management challenges and points out the research directions,laying a foundation for the management,exploration,and development of coal-rock gas in China.
基金funded by the National Natural Science Foundation of China(No.51974343)the Open Fund of Hubei Key Laboratory of Drilling and Production Engineering for Oil and Gas(Yangtze University)(No.YQZC202307)+2 种基金the Qingdao Postdoctoral Applied Research Project(No.qdyy20200084)the China Postdoctoral Science Foundation(No.2021M703588)a project of Science&Technology R&D Department of SINOPEC entitled Key Technology for Optimization Design of 3D Development of Shale oil in Dongying Sag(No.P23026).
文摘Currently,limited studies of immiscible water-alternating-CO_(2)(imWACO_(2))flooding focus on the impact of reservoir heterogeneity on reservoir development outcomes.Given this,using the heterogeneous reservoirs in the Gao 89-1 block as a case study,this study conducted slab core flooding experiments and numerical simulations to assess the impact of reservoir heterogeneity on imWACO_(2)flooding efficiency.It can be concluded that imWACO_(2)flooding can enhance the sweep volume and oil recovery compared to continuous CO_(2)flooding.As the permeability difference increases,the difference in the swept volume between zones/layers with relatively high and low permeability increases.To optimize the exploitation of reservoirs in the Gao 89-1 block,the optimal timing and CO_(2)injection rate for imWACO_(2)flooding are determined at water cut of 40%and 10000 m^(3)/d,respectively.A short injection-production semi-period,combined with multiple cycles of water and CO_(2)injection alternations,is beneficial for enhanced oil recovery from imWACO_(2)flooding.
文摘Taiyuan formation is the main exploration strata in Ordos Basin, and coals are widely developed. Due to the interference of strong reflection of coals, we cannot completely identify the effective reservoir information of coal-bearing reservoir on seismic data. Previous researchers have studied the reservoir by stripping or weakening the strong reflection, but it is difficult to determine the effectiveness of the remaining reflection seismic data. In this paper, through the establishment of 2D forward model of coal-bearing strata, the corresponding geophysical characteristics of different reflection types of coal-bearing strata are analyzed, and then the favorable sedimentary facies zones for reservoir development are predicted. On this basis, combined with seismic properties, the coal-bearing reservoir is quantitatively characterized by seismic inversion. The above research shows that the Taiyuan formation in LS block of Ordos Basin is affected by coals and forms three or two peaks in different locations. The reservoir plane sedimentary facies zone is effectively characterized by seismic reflection structure. Based on the characteristics of sedimentary facies belt and petrophysical analysis, the reservoir is semi quantitatively characterized by attribute analysis and waveform indication, and quantitatively characterized by pre stack geostatistical inversion. Based on the forward analysis of coal measure strata, this technology characterizes the reservoir facies belt through seismic reflection characteristics, and describes coal measure reservoirs step by step. It effectively guides the exploration of LS block in Ordos Basin, and has achieved good practical application effect.
基金financially supported by the National Science and Technology Major Project of China (grant No. 2016ZX05066001–002)the National Science Foundation for Young Scientists of China (grant No. 41702171)the Program for Excellent Talents in Beijing (grant No. 2017000020124G107)
文摘Determining the process of densification and tectonic evolution of tight sandstone can help to understand the distribution of reservoirs and find relatively high-permeability areas.Based on integrated approaches of thin section,scanning electron microscopy(SEM),cathode luminescence(CL),nuclear magnetic resonance(NMR),X-ray diffraction(XRD),N2 porosity and permeability,micro-resistivity imaging log(MIL)and three-dimensional seismic data analysis,this work discussed the reservoir characteristics of the member 8 of the Permian Xiashihezi Formation(He 8 sandstones)in the Linxing area of eastern Ordos Basin,determined the factors affecting reservoir quality,and revealed the formation mechanism of relatively high-permeability areas.The results show that the He 8 sandstones in the Linxing area are mainly composed of feldspathic litharenites,and are typical tight sandstones(with porosity<10%and permeability<1 mD accounting for 80.3%of the total samples).Rapid burial is the main reason for reservoir densification,which resulted in 61%loss of the primary porosity.In this process,quartz protected the original porosity by resisting compaction.The cementation(including carbonate,clay mineral and siliceous cementation)further densified the sandstone reservoirs,reducing the primary porosity with an average value of 28%.The calcite formed in the eodiagenesis occupied intergranular pores and affected the formation of the secondary pores by preventing the later fluid intrusion,and the Fe-calcite formed in the mesodiagenetic stage densified the sandstones further by filling the residual intergranular pores.The clay minerals show negative effects on reservoir quality,however,the chlorite coatings protected the original porosity by preventing the overgrowth of quartz.The dissolution of feldspars provides extensive intergranular pores which constitute the main pore type,and improves the reservoir quality.The tectonic movements play an important role in improving the reservoir quality.The current tectonic traces of the study area are mainly controlled by the Himalayan movement,and the high-permeability reservoirs are mainly distributed in the anticline areas.Additionally,the improvement degree(by tectonic movements)of reservoir quality is partly controlled by the original composition of the sandstones.Thus,the selection of potential tight gas well locations in the study area should be focused on the anticline areas with relatively good original reservoir quality.And the phenomena can be referenced for other fluvial tight sandstone basins worldwide.
文摘It is of great significance to forecast high yield of CBM wells and analyze dynamic production by having an overall study on the characteristics of the produced CBM and determining the main factors influencing the productivity of CBM. With the test report and the related geological parameters of a single well, methods of combining the productivity data and typical production curves were used to analyze different geological factors and how to influence the capacity of a single layer. Then, the paper proposed a new understanding about capacity characteristics of the study area and geological control factors: First, the Shanxi formation production capacity characteristics was divided into two-stages, showing signs of gas and gas break- through for 100 days. Second, two parameters, which include potential of gas production and gas production capacity, were bet- ter than the single parameter, such as gas content, coal thickness, and penetration to analyze affecting factors of single well pro- duction. Finally, comprehensive analysis concluded that the ratio of critical desorption pressure to reservoir pressure has greater influence on the production of vertical CBM wells. Besides, the potential of gas production capacity has greater impact at stage of showing gas signs; the coal reservoir pressure and gas production capacity have greater impact at stage of gas breakthrough for 100 days. Thus, to seek the coal bed methane with high ratio of critical desorption pressure to reservoir pressure and high yield of gas will be important guarantee to the success of the coal bed methane exploration and development.
基金supported by the National Natural Science Foundation of China (grants No.41306062 and 41474119)the Key Laboratory of Gas Hydrate Foundation (grant No.SHW[2014]-DX-04)
文摘Objective Authigenic pyrite often develops extensively in marine sediments,which is an important product of sulfate reduction in an anoxic environment.It has a specific appearance and complicated sulfur isotopic properties,and acts as important evidence of methane seep in marine sediments.Strong AOM(anaerobic oxidation of methane)activity has developed in the Okinawa Trough.
文摘The multiple linear regression equations for adsorption ratio of CO2/CH4 and its coal quality indexes were built with SPSS software on basis of existing coal quality data and its adsorption amount of CO2 and OH4. The regression equations built were tested with data collected from some s, and the influences of coal quality indexes on adsorption ratio of CO2/CH4 were studied with investigation of regression equations. The study results show that the regression equation for adsorption ratio of CO2/CH4 and volatile matter, ash and moisture in coal can be obtained with multiple linear regression analysis, that the influence of same coal quality index with the degree of metamorphosis or influence of coal quality indexes for same coal rank on adsorption ratio is not consistent.
基金the National Natural Science Foundation of China(Grant No.41530315,41872160,41372213,41804080)the National Science and Technology Major Project of China(Grant No.2016ZX05066003,2016ZX05066006)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05030I00)Sichuan Science and Technology Support Project(grant No.20I0JZ0037)and China Scholarship Council and British Council(Grant No.201703780094).
文摘Tight sandstone gas in the Linxing Block, eastern Ordos Basin, has been successfully exploited. The high performance is mainly a result of the special geological conditions. The key geological controls for high production have been discussed on the basis of seismic data, field observation, sample features, mercury porosimetry, mechanical properties, and basin modeling. Firstly, the coal measures have good gas generation potential, not only because of the existence of coalbeds and organic-rich shales, but also because coal laminae and microbial mats in the shales significantly increase their total organic carbon(TOC) contents. Secondly, except for the uplifted zone of the Zijinshan complex and the eastern fault zone, rare large faults develop in the Carboniferous–Permian sequence, ensuing the sealing capacity of cap rock. Small fractures generally concentrated in the sandstones rather than the mudstones. Thirdly, gas accumulation in the Linxing Block was controlled by the tectonic, burial and thermal histories. Gas accumulation in the Linxing Block started in the Late Triassic, followed by three short pauses of thermal maturation caused by relatively small uplifts;the maximum hydrocarbon generation period is the Early Cetaceous as a combined result of regional and magmatic thermal metamorphisms. Field profiles show abundant fractures in sandstone beds but rare fractures in mudstone beds. Mechanical properties, determined by lithostratigraphy, confine the fractures in the sandstones, increasing the permeability of sandstone reservoirs and retaining the sealing capacity of the mudstone cap rocks. The modern ground stress conditions favor the opening of predominant natural fractures in the NNW-SSE and N-S directions. These conclusions are useful for exploring the potential tight sandstone gas field.
基金We would like to express our gratitude to the reviewers for offering constructive suggestions and comments which improved this manuscript in many aspects. This work was supported by the National Science and Technology Major Project (No. 2016ZX05066), the National Natural Science Foundation of China (Grant Nos. 41702130, 41672149, and 41672146), the Fundamental Research Funds for the Central Universities (2015XKZD07), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Understanding the distribution of in-situ stresses is extremely important in a wide range of fields such as oil and gas exploration and development, CO2 sequestration, borehole stability, and stress-related geohazards assessment. In the present study, the in-situ stress distribution in the Linxing area of eastern Ordos Basin, China, was analyzed based on well tested parameters. The maximum horizontal principal stress (SHmax), minimum horizontal principal stress (Shmin), and vertical stress (Sv) were calculated, and they were linearly correlated with burial depth. In general, two types of in-situ stress fields were determined in the Linxing area: (i) the in-situ stress state followed the relation Sv 〉 Snmax 〉 Shmin in shallow layers with burial depths of less than about 940 m, indicating a normal faulting stress regime; (ii) the Snmax magnitude increased conspicuously and was greater than the Sv magnitude in deep layers with depths more than about 940 m, and the in-situ stress state followed the relation Snmax 〉 Sv 〉 Shmin, demonstrating a strike-slip faulting stress regime. The horizontal differential stress (Snmax-Shmtn) increased with burial depth, indicating that wellbore instability may be a potentially significant problem when drilling deep vertical wells. The lateral stress coefficient ranged from 0.73 to 1.08 with an average of 0.93 in the Linxing area. The coalbed methane (CBM) reservoir permeability was also analyzed. No obvious exponential relationship was found between coal permeability and effective in-situ stress magnitude. Coal permeability was relatively high under a larger effective in-situ stress magnitude. Multiple factors, including fracture development, contribute to the variation of CBM reservoir permeability in the Linxing area of eastern Ordos Basin.
基金This study was financially supported by China United Coalbed Methane Corporation,Ltd.(ZZGSSALFGR2021-581),Bin Li received the grant.
文摘In order to overcome the deficiencies of current methods for the prediction of the productivity of shale gas hor-izontal wells after fracturing,a new sophisticated approach is proposed in this study.This new model stems from the combination several techniques,namely,artificial neural network(ANN),particle swarm optimization(PSO),Imperialist Competitive Algorithms(ICA),and Ant Clony Optimization(ACO).These are properly implemented by using the geological and engineering parameters collected from 317 wells.The results show that the optimum PSO-ANN model has a high accuracy,obtaining a R2 of 0.847 on the testing.The partial dependence plots(PDP)indicate that liquid consumption intensity and the proportion of quartz sand are the two most sensitive factors affecting the model’s performance.
基金the National Natural Science Foundation of China(Grant No.42141012)the National Key R&D Program of China(No.2018YFB0605600)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The permeability and its horizontal anisotropy induce a critical influence on staged CH_(4) output inhibition process.However,a quantitative evaluation of this influence has been rarely reported in the literature.In this work,the impact of horizontal anisotropic permeability on CO_(2)-ECBM was numerically investigated.The variation in the staged CH_(4) output inhibition was analyzed.The ideal displacement profile of the CO_(2)-ECBM process was established for the first time.Moreover,the variation in CH_(4) output of different wellbores was discussed.The results showed that 1)low-permeable or weak-anisotropic reservoirs were not conducive to enhanced CH_(4) recovery owing to long inhibition time(>1091 days)and high inhibition level(>36.9%).As permeability and anisotropy increased,due to the accelerated seepage of free water,the hysteresis time and inhibition time could decrease to as short as 5 days and 87 days,respectively,and the inhibition level could weaken to as low as 5.00%.Additionally,the CH_(4) output and CO_(2) injection could increase significantly.2)Nevertheless,high permeability and strong anisotropy easily induced CO_(2) breakthrough,resulting in lower CH_(4) production,CO_(2) injection and CO_(2) storage than expected.While maintaining high efficiency of CO_(2) storage(>99%),upregulating CO_(2) breakthrough concentration from 10%to 20%might ease the unfavorable trend.3)Along the direction of fluid flow,the ideal displacement profile consisted of CO_(2) enriched bank,CO_(2) and CH_(4) mixed bank,CH_(4) enriched bank,and water enriched bank,whereas a remarkable gap in the displacement profiles of the dominant and non-dominant seepage directions was observed.4)The potential of CH_(4) output might vary greatly among different wellbores.The producers along the dominant seepage direction held more potential for CH_(4) recovery in the short-term,while those along the non-dominant seepage direction avoided becoming invalid only if a long-time injection measure was taken for the injectors.These findings pave the way to understand fluid seepage in real complex reservoirs during CO_(2)-ECBM and conduct further field projects.
基金supported by the Sichuan Natural Science Foundation(2023NSFSC0422)the Petrochina's"14th Five-Year plan"Project(2021Dj2804).
文摘The transmission medium of natural gas gathering and transportation pipelines usually contains cor-rosive gases,which will cause serious corrosion on the inner wall of the pipelines when they coexist with water.Therefore,it is necessary to add corrosion inhibitor to form a protective film to protect the pipeline.The distribution of corrosion inhibitors in a gathering and transportation pipeline in Moxi gas field was studied by combining experiment and simulation.The Pearson function was used to calculate the experimental and simulation results,and the correlation was more than 80%,indicating a high degree of agreement.The simulation results show that:①The larger the pipe angle,filling speed and gas flow rate,the smaller the particle size,the better the distribution of corrosion inhibitor particles in the pipe.The filling amount will affect the concentration,but the distribution trend is unchanged;②A method to determine the filling mode based on the loss was proposed,and for this pipeline,the loss of corrosion inhibitor was determined to be 5.31×10^(-3) kg/s,and the flling amount was recommended to be adjusted to 2o L/h,which has certain guiding significance for the actual flling strategy of pipeline corrosion inhibitor.
基金Supported by the National Natural Science Foundation of China(42302183,42272156,41922015)Sanya City Science and Technology Innovation Project(2022KJCX51).
文摘The gas-water distribution and production heterogeneity of tight gas reservoirs have been summarized from experimental and geological observations, but the charging and accumulation mechanisms have not been examined quantitatively by mathematical model. The tight gas charging and accumulation mechanisms were revealed from a combination of physical simulation of nuclear magnetic resonance coupling displacement, numerical simulation considering material and mechanical equilibria, as well as actual geological observation. The results show that gas migrates into tight rocks to preferentially form a gas saturation stabilization zone near the source-reservoir interface. When the gas source is insufficient, gas saturation reduction zone and uncharged zone are formed in sequence from the source-reservoir interface. The better the source rock conditions with more gas expulsion volume and higher overpressure, the thicker the gas saturation stabilization and reduction zones, and the higher the overall gas saturation. When the source rock conditions are limited, the better the tight reservoir conditions with higher porosity and permeability as well as larger pore throat, the thinner the gas saturation stabilization and reduction zones, but the gas saturation is high. The sweet spot of tight gas is developed in the high-quality reservoir near the source rock, which often corresponds to the gas saturation stabilization zone. The numerical simulation results by mathematical model agree well with the physical simulation results by nuclear magnetic resonance coupling displacement, and reasonably explain the gas-water distribution and production pattern of deep reservoirs in the Xujiaweizi fault depression of the Songliao Basin and tight gas reservoirs in the Linxing-Huangfu area of the Ordos Basin.