期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Fabrication,microstructures,and properties of copper matrix composites reinforced by molybdenum-coated carbon nanotubes 被引量:12
1
作者 NIE Junhui JIA Chengchang +3 位作者 JIA Xian ZHANG Yafeng SHI Na LI Yi 《Rare Metals》 SCIE EI CAS CSCD 2011年第4期401-407,共7页
Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper p... Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper powders to fabricate Mo-CNT/Cu composites by means of mechanical milling followed by spark plasma sintering. The Mo-CNTs were uniform dispersion in the Cu matrix when their contents were 2.5 vo1.%-7.5 vol.%, while some Mo-CNT clusters were clearly observed at additions of 10.0 vo1.%-15.0 vol.% Mo-CNTs in the mixture. The mechanical, electrical, and thermal properties of the Mo-CNT/Cu composites were characterized, and the results showed that the tensile strength and hardness were 2.0 and 2.2 times higher than those of CNT-free specimens, respectively. Moreover, the Mo-CNT/Cu composites exhibited an enhanced thermal conductivity but inferior electrical conductivity compared with sintered pure Cu. The uncoated CNT/Cu composites were fabricated by the similar processes, and the measured tensile strength, hardness, thermal conductivity, and electrical conductivity of the CNT/Cu composites were lower than those of the Mo-CNT/Cu composites. 展开更多
关键词 metallic matrix composites mechanical properties ball milling MOLYBDENUM carbon nanotubes
下载PDF
Fabrication and thermal conductivity of copper matrix composites reinforced by tungsten-coated carbon nanotubes 被引量:6
2
作者 Jun-hui Nie Cheng-chang Jia +3 位作者 XianJia Yi Li Ya-feng Zhang Xue-bing Liang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第5期446-452,共7页
Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were... Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vo1%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (〈5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vo1%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Gamett effective medium approximation, and its calculated value was about 3.0× 10-9 m2.K.W-l. 展开更多
关键词 metallic matrix composites (MMCs) carbon nanotubes TUNGSTEN copper spark plasma sintering thermal conductivity
下载PDF
Friction and wear properties of copper matrix composites reinforced by tungsten-coated carbon nanotubes 被引量:3
3
作者 NIE Junhui JIA Xian +3 位作者 JIA Chengchang LI Yi ZHANG Yafeng SHI Na 《Rare Metals》 SCIE EI CAS CSCD 2011年第6期657-663,共7页
Carbon nanotubes (CNTs) were coated by tungsten layer using metal organic chemical vapor deposition process with tungsten hexacarbonyl as a precursor. The W-coated CNTs (W-CNTs) were dispersed into Cu powders by m... Carbon nanotubes (CNTs) were coated by tungsten layer using metal organic chemical vapor deposition process with tungsten hexacarbonyl as a precursor. The W-coated CNTs (W-CNTs) were dispersed into Cu powders by magnetic stirring process and then the mixed powders were consolidated by spark plasma sintering to fabricate W-CNTs/Cu composites. The CNTs/Cu composites were fabricated using the similafprocesses. The friction coefficient and mass wear loss of W-CNTs/Cu and CNTs/Cu composites were studied. The results showed that the W-CNT content, interfacial bonding situation, and applied load could influence the friction coefficient and wear loss of W-CNTs/Cu com- posites. When the W-CNT content was 1.0 wt.%, the W-CNTs/Cu composites got the minimum friction coefficient and wear loss, which were decreased by 72.1% and 47.6%, respectively, compared with pure Cu specimen. The friction coefficient and wear loss of W-CNTs/Cu composites were lower than those of CNTs/Cu composites, which was due to that the interracial bonding at (W-CNTs)-Cu interface was better than that at CNTs-Cu interface. The friction coefficient of composites did not vary obviously with increasing applied load, while the wear loss of composites increased significantly with the increase of applied load. 展开更多
关键词 carbon nanotubes tungsten layer COPPER friction coefficient wear loss
下载PDF
Influence of post-grown treatments on CuInS_2 thin films prepared by sulphurization of Cu-In films 被引量:2
4
作者 YAN Youhua LIU Yingchun FANG Ling ZHAO Haihua LI Deren LU Zhichao ZHOU Shaoxiong 《Rare Metals》 SCIE EI CAS CSCD 2008年第5期490-495,共6页
Polycrystalline CuInS2 (CIS) films were prepared by sulphurization of Cu-In films. The surface morphology and phase composition of the as-grown film, the KCN-etched film, and the annealed KCN-etched film were invest... Polycrystalline CuInS2 (CIS) films were prepared by sulphurization of Cu-In films. The surface morphology and phase composition of the as-grown film, the KCN-etched film, and the annealed KCN-etched film were investigated. During the sulphurization, the secondary CuxS phase segregated on the surface of the as-grown films. To improve the crystalline quality of CuInS2 films, a series of post-grown treatments, such as KCN-etching and vacuum annealing KCN-etched films, were performed on the as-grown films. Both as-grown and post-treated films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The results indicated that a CuxS secondary phase segregated on the surface of the as-grown film, which could be removed effectively by KCN etching. After the vacuum annealing treatment, the KCN-etched film had a sphalerite structure with (112) preferred orientation. Meanwhile, the crystalline quality of the CIS film was significantly improved, which provided a novel method to improve the performance of thin film solar cells. 展开更多
关键词 solar energy CuInS2 thin film KCN etching annealing treatment sulphurization
下载PDF
Microstructure and optical properties of sprayed γ-CuI thin films for CuInS_2 solar cells 被引量:1
5
作者 YAN Youhua ZHOU Shaoxiong LU Zhichao LI Zhengbang 《Rare Metals》 SCIE EI CAS CSCD 2011年第1期22-27,共6页
γ-CuI thin films were prepared by a spraying method using acetonitrile as a solvent,CuI and iodine as reagents.The influences of substrate temperature on the structure,topography,and optical properties of CuI films w... γ-CuI thin films were prepared by a spraying method using acetonitrile as a solvent,CuI and iodine as reagents.The influences of substrate temperature on the structure,topography,and optical properties of CuI films were investigated.Scanning electron microscope(SEM) photos revealed that the shape and grain size of CuI grains were related to substrate temperature.X-ray diffraction results showed that substrate temperature affected the crystalline quality of CuI films.When the substrate temperature was 110°C,CuI thin films showed γ-phase zinkblende structure with(111) preferred orientation.The dimension of the globular CuI crystallite was approximately 35 nm,the energy band gap was 2.97 eV,the maximum transmittance was 87.3% in the part of the visible region,and the open circuit voltage was close to 380 mV.This opened a route for a cadmium-free buffer layer for CuInS2 solar cells. 展开更多
关键词 solar cells thin films spraying MICROSTRUCTURE optical properties
下载PDF
Oxidation behavior of the Fe-36Al-0.09C-0.09B-0.04Zr alloy at 1250℃
6
作者 Jun-you Liu Feng Li +3 位作者 Jie Liu Yi Zhang Jin-cheng Jiang Dun-xu Zou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第4期441-447,共7页
To explore and study the Fe-A1 system alloy presenting exceptional oxidation resistance at high temperature, the Fe-36Al-0.09C-0.09B-0.04Zr alloy was designed and developed. The microstructure and hardness of the back... To explore and study the Fe-A1 system alloy presenting exceptional oxidation resistance at high temperature, the Fe-36Al-0.09C-0.09B-0.04Zr alloy was designed and developed. The microstructure and hardness of the backing at 1250℃were analyzed and measured. Thermodynamics and kinetics of the oxidation behavior were also analyzed by X-ray diffraction, scanning electron micros- copy, and energy-dispersive X-ray spectroscopy techniques. The results show that the microstructttre of the Fe-36Al-0.09C-0.09B-0.04Zr alloy is FeAl phase at ambient temperature and is stable at 1250℃. It displays the excellent property of oxidation resistance because the oxide film has only the Al2O3 layer, and its oxidation kinetics curve obeys the parabolic law at 1250℃. The oxidation mechanism at 1250℃ is presumed that in the early oxidation period, the alloy oxidizes to form a large number of Al2O3 and a little Fe2O3, then, the enrichment of Al caused by Fe oxidization combines with O to form Al2O3. 展开更多
关键词 Fe-alloy oxidation behavior oxide film oxidation thermodynamics oxidation kinetics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部