Blockage in the storage and transportation of waste resin is a difficult problem in the radioactive waste treatment process of nuclear power plants.In this study,in order to solve the problems of unstable resin transp...Blockage in the storage and transportation of waste resin is a difficult problem in the radioactive waste treatment process of nuclear power plants.In this study,in order to solve the problems of unstable resin transport concentration and easy blockage of conveying equipment and pipelines in nuclear power plants in China,a set of non⁃stirring conveying devices is developed,and theoretical calculations,simulation analysis and experimental verification are carried out.By transporting resin using the no stirring conveying device developed in this paper,it is not only to eliminate the risk of blockage and ensure the safety of transportation,but also to adjust the concentration of conveying resin to change the transport efficiency according to the operating conditions.The effective bearing rate of waste resin storage tank can be improved,so that the comprehensive performance of waste resin storage and transportation in nuclear power plants can be greatly improved.展开更多
Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated ...Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified.展开更多
The sipping test devices are used to identify the defective fuel. The defective fuel can be identified by detecting the occurrence of the fission products that are entrained by the medium rising around the fuel rods. ...The sipping test devices are used to identify the defective fuel. The defective fuel can be identified by detecting the occurrence of the fission products that are entrained by the medium rising around the fuel rods. This project is the setting of the two kinds of the three sipping test devices to inspect the tightness of the irradiated fuel assembly from two units NPP (nuclear power plant). The in-mast sipping shared by two units is used for qualitative tightness test of each fuel assembly during refueling operation above the reactor. The two poolside sipping is used for quantitatively confirming the diagnosis of the in-mast sipping and identifying the tightness of the fuel at the side of the fuel storage pools of each unit after refueling. The project was implemented by research, design manufacture and calibration of these three devices and completed successfully with serious quality assurance and quality control. The performance of these devices is well demonstrated.展开更多
An in-house code,CONTHAC-3D,was developed to calculate and analyze thermal-hydraulic phenomena in containments during severe accidents.CONTHAC-3D is a three-dimensional computational fluid dynamics code that can be ap...An in-house code,CONTHAC-3D,was developed to calculate and analyze thermal-hydraulic phenomena in containments during severe accidents.CONTHAC-3D is a three-dimensional computational fluid dynamics code that can be applied to predict gas flow,diffusion,and steam condensation in a containment during a severe hypothetical accident,as well as to obtain an estimate of the local hydrogen concentration in various zones of the containment.CONTHAC-3D was developed using multiple models to simulate the features of the proprietary systems and equipment of HPR1000 and ACP100,such as the passive cooling system,passive autocatalytic recombiners and the passive air cooling system.To validate CONTHAC-3D,a GX6 test was performed at the Battelle Model Containment facility.The hydrogen concentration and temperature monitored by the GX6 test are accurately predicted by CONTHAC-3D.Subsequently,the hydrogen distribution in the HPR1000 containment during a severe accident was studied.The results show that the hydrogen removal rates calculated using CONTHAC-3D for different types of PARs agree well with the theoretical values,with an error of less than 1%.As the accident progresses,the hydrogen concentration in the lower compartment becomes higher than that in the large space,which implies that the lower compartment has a higher hydrogen risk than the dome and large space at a later stage of the accident.The amount of hydrogen removed by the PARs placed on the floor of the compartment is small;therefore,raising the installation height of these recombiners appropriately is recommended.However,we do not recommend installing all autocatalytic recombiners at high positions.The study findings in regard to the hydrogen distribution in the HPR1000 containment indicate that CONTHAC-3D can be applied to the study of hydrogen risk containment.展开更多
A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adh...A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adhere to the wire mesh packing in the rotor,thus resulting in an imbalance in the vibration of the rotor,which may cause serious damage to the bearing and material leakage.This study proposes a model prediction for estimating the bearing residual life of a rotating packed bed based on rotor imbalance response analysis.This method is used to determine the influence of the mass on the imbalance in the vibration of the rotor on bearing damage.The major influence on rotor vibration was found to be exerted by the imbalanced mass and its distribution radius,as revealed by the results of orthogonal experiments.Through implementing finite element analysis,the imbalance response curve for the rotating packed bed rotor was obtained,and a correlation among rotor imbalance mass,distribution radius of imbalance mass,and bearing residue life was established via data fitting.The predicted value of the bearing life can be used as the reference basis for an early safety warning of a rotating packed bed to effectively avoid accidents.展开更多
This study presents a proposed method for assessing the condition and predicting the future status of condensers operating in seawater over an extended period.The aim is to address the problems of scaling and corrosio...This study presents a proposed method for assessing the condition and predicting the future status of condensers operating in seawater over an extended period.The aim is to address the problems of scaling and corrosion,which lead to increased loss of cold resources.The method involves utilising a set of multivariate feature parameters associated with the condenser as input for evaluation and trend prediction.This methodology offers a precise means of determining the optimal timing for condenser cleaning,with the ultimate goal of improving its overall performance.The proposed approach involves the integration of the analytic network process with subjective expert experience and the entropy weightmethod with objective big data analysis to develop a fusion health degreemodel.The mathematical model is constructed quantitatively using the improved Mahalanobis distance.Furthermore,a comprehensive prediction model is developed by integrating the improved Informer model and Markov error correction.This model takes into account the health status of the equipment and several influencing factors,includingmultivariate feature characteristics.This model facilitates the objective examination and prediction of the progression of equipment deterioration trends.The present study involves the computation and verification of the field time series data,which serves to demonstrate the accuracy of the condenser health-related models proposed in this research.These models effectively depict the real condition and temporal variations of the equipment,thus offering a valuable method for determining the precise cleaning time required for the condenser.展开更多
To benefit from recent advances in modeling and computational algorithms,as well as the availability of new covariance data,sensitivity and uncertainty analyses are needed to quantify the impact of uncertain sources o...To benefit from recent advances in modeling and computational algorithms,as well as the availability of new covariance data,sensitivity and uncertainty analyses are needed to quantify the impact of uncertain sources on the design parameters of small prismatic high-temperature gascooled reactors(HTGRs).In particular,the contribution of nuclear data to the k_(eff)uncertainty is an important part of the uncertainty analysis of small-sized HTGR physical calculations.In this study,a small-sized HTGR designed by China Nuclear Power Engineering Co.,Ltd.was selected for k_(eff)uncertainty analysis during full lifetime burnup calculations.Models of the cold zero power(CZP)condition and full lifetime burnup process were constructed using the Reactor Monte Carlo Code RMC for neutron transport calculation,depletion calculation,and sensitivity and uncertainty analysis.For the sensitivity analysis,the Contribution-Linked eigenvalue sensitivity/Uncertainty estimation via Track length importance Characterization(CLUTCH)method was applied to obtain sensitive information,and the "sandwich" method was used to quantify the k_(eff)uncertainty.We also compared the k_(eff)uncertainties to other typical reactors.Our results show that ^(235)U is the largest contributor to k_(eff)uncertainty for both the CZP and depletion conditions,while the contribution of ^(239)Pu is not very significant because of the design of low discharge burnup.It is worth noting that the radioactive capture reaction of ^(28)Si significantly contributes to the k_(eff)uncertainty owing to its specific fuel design.However,the k_(eff)uncertainty during the full lifetime depletion process was relatively stable,only increasing by 1.12%owing to the low discharge burnup design of small-sized HTGRs.These numerical results are beneficial for neutronics design and core parameters optimization in further uncertainty propagation and quantification study for small-sized HTGR.展开更多
Nuclear security usually requires the simultaneous detection of neutrons and gamma rays.With the development of crystalline materials in recent years,Cs2LiLaBr6(CLLB)dual-readout detectors have attracted extensive att...Nuclear security usually requires the simultaneous detection of neutrons and gamma rays.With the development of crystalline materials in recent years,Cs2LiLaBr6(CLLB)dual-readout detectors have attracted extensive attention from researchers,where real-time neutron/gamma pulse discrimination is the critical factor among detector performance parameters.This study investigated the discrimination performance of the charge comparison,amplitude comparison,time comparison,and pulse gradient_(m)ethods and the effects of a Sallen–Key filter on their performance.Experimental results show that the figure of merit(FOM)of all four methods is improved by proper filtering.Among them,the charge comparison method exhibits excellent noise resistance;moreover,it is the most_(s)uitable method of real-time discrimination for CLLB detectors.However,its discrimination performance depends on the parameters t_(s),t_(m),and t_(e).When t_(s)corresponds to the moment at which the pulse is at 10%of its peak value,t_(e)requires a delay of only 640–740 ns compared to t_(s),at which time the potentially optimal FOM of the charge comparison method at 3.1–3.3 MeV is greater than 1.46.The FOM obtained using the t_(m)value calculated by a proposed maximized discrimination difference model(MDDM)and the potentially optimal FOM differ by less than 3.9%,indicating that the model can provide good guidance for parameter selection in the charge comparison method.展开更多
The inter-cycle correlation of fission source distributions(FSDs)in the Monte Carlo power iteration process results in variance underestimation of tallied physical quantities,especially in large local tallies.This stu...The inter-cycle correlation of fission source distributions(FSDs)in the Monte Carlo power iteration process results in variance underestimation of tallied physical quantities,especially in large local tallies.This study provides a mesh-free semiquantitative variance underestimation elimination method to obtain a credible confidence interval for the tallied results.This method comprises two procedures:Estimation and Elimination.The FSD inter-cycle correlation length is estimated in the Estimation procedure using the Sliced Wasserstein distance algorithm.The batch method was then used in the elimination procedure.The FSD inter-cycle correlation length was proved to be the optimum batch length to eliminate the variance underestimation problem.We exemplified this method using the OECD sphere array model and 3D PWR BEAVRS model.The results showed that the average variance underestimation ratios of local tallies declined from 37 to 87%to within±5%in these models.展开更多
Efficient methods for incorporating engineering experience into the intelligent generation and optimization of shear wall structures are lacking,hindering intelligent design performance assessment and enhancement.This...Efficient methods for incorporating engineering experience into the intelligent generation and optimization of shear wall structures are lacking,hindering intelligent design performance assessment and enhancement.This study introduces an assessment method used in the intelligent design and optimization of shear wall structures that effectively combines mechanical analysis and formulaic encoding of empirical rules.First,the critical information about the structure was extracted through data structuring.Second,an empirical rule assessment method was developed based on the engineer's experience and design standards to complete a preliminary assessment and screening of the structure.Subsequently,an assessment method based on mechanical performance and material consumption was used to compare different structural schemes comprehensively.Finally,the assessment effectiveness was demonstrated using a typical case.Compared to traditional assessment methods,the proposed method is more comprehensive and significantly more efficient,promoting the intelligent transformation of structural design.展开更多
Nuclear power plays a key role as renewable energy in alleviating the worldwide energy shortage.The material degradation caused by high-temperature and high-flux neutron irradiation is the most concerning issue for nu...Nuclear power plays a key role as renewable energy in alleviating the worldwide energy shortage.The material degradation caused by high-temperature and high-flux neutron irradiation is the most concerning issue for nuclear reactor safety.A large number of He atoms produced through the(n,α)transmutation reaction diffuse and migrate in metals and accumulate to form He bubbles because of the extremely low solubility of He atoms in metal materials.The helium bubbles gather at the grain boundary or grain to cause swelling,hardening,embrittlement,and other damages to the in-core structural components.This paper mainly summarizes the research progress on He irradiation in steel and iron-based alloys,including the diffusion and accumulation of He atoms,the nucleation and growth of He bubbles,and the microstructure and macroscopic degradation of material performance caused by He irradiation.The mechanism of helium irradiation-induced corrosion in steel and iron-based alloys in recent years is reviewed as well.Moreover,the investigations on irradiation performance in additive manufactured stainless steels are summarized,and the mechanism of irradiation resistance is prospected.展开更多
1.Introduction HPR1000 is an advanced mega-kilowatt-class third-generation pressurized water reactor(PWR)nuclear power technology developed by China,based on more than 30 years of experience in the scientific research...1.Introduction HPR1000 is an advanced mega-kilowatt-class third-generation pressurized water reactor(PWR)nuclear power technology developed by China,based on more than 30 years of experience in the scientific research,design,equipment manufacturing,construction,and operation of nuclear power.展开更多
After the first concrete was poured on December 9, 2012 at the Shidao Bay site in Rongcheng, Shandong Province, China, the construction of the reactor building for the world's first high-temperature gas- cooled react...After the first concrete was poured on December 9, 2012 at the Shidao Bay site in Rongcheng, Shandong Province, China, the construction of the reactor building for the world's first high-temperature gas- cooled reactor pebble-bed module (HTR-PM) demonstration power plant was completed in June, 2015. Installation of the main equipment then began, and the power plant is currently progressing well to- ward connecting to the grid at the end of 2017. The thermal power of a single HTR-PM reactor module is 250 MW,h, the helium temperatures at the reactor core inlet/outlet are 250/750 ℃, and a steam of 13.25 MPa/567 ~C is produced at the steam generator outlet. Two HTR-PM reactor modules are connect- ed to a steam turbine to form a 210 MW nuclear power plant. Due to China's industrial capability, we were able to overcome great difficulties, manufacture first-of-a-kind equipment, and realize series ma- jor technological innovations. We have achieved successful results in many aspects, including planning and implementing R&D, establishing an industrial partnership, manufacturing equipment, fuel produc- tion, licensing, site preparation, and balancing safety and economics; these obtained experiences may also be referenced by the global nuclear community.展开更多
HPR1000 is an advanced nuclear power plant(NPP)with the significant feature of an active and passive safety design philosophy,developed by the China National Nuclear Corporation.On one hand,it is an evolutionary desig...HPR1000 is an advanced nuclear power plant(NPP)with the significant feature of an active and passive safety design philosophy,developed by the China National Nuclear Corporation.On one hand,it is an evolutionary design based on proven technology of the existing pressurized water reactor NPP;on the other hand,it incorporates advanced design features including a 177-fuel-assembly core loaded with CF3 fuel assemblies,active and passive safety systems,comprehensive severe accident prevention and mitigation measures,enhanced protection against external events,and improved emergency response capability.Extensive verification experiments and tests have been performed for critical innovative improvements on passive systems,the reactor core,and the main equipment.The design of HPR1000fulfills the international utility requirements for advanced light water reactors and the latest nuclear safety requirements,and addresses the safety issues relevant to the Fukushima accident.Along with its outstanding safety and economy,HPR1000 provides an excellent and practicable solution for both domestic and international nuclear power markets.展开更多
Blast-induced dominant vibration frequency (DVF) involves a complex, nonlinear and small sample system considering rock properties, blasting parameters and topography. In this study, a combination of grey relational...Blast-induced dominant vibration frequency (DVF) involves a complex, nonlinear and small sample system considering rock properties, blasting parameters and topography. In this study, a combination of grey relational analysis and dimensional analysis procedures for prediction of dominant vibration frequency are presented. Six factors are selected from extensive effect factor sequences based on grey relational analysis, and then a novel blast-induced dominant vibration frequency prediction is obtained by dimensional analysis. In addition, the prediction is simplified by sensitivity analysis with 195 experimental blast records. Validation is carried out for the proposed formula based on the site test database of the first- period blasting excavation in the Guangdong Lufeng Nuclear Power Plant (GLNPP). The results show the proposed approach has a higher fitting degree and smaller mean error when compared with traditional predictions.展开更多
Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts...Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts to the landscape and socioeconomic structure. In order to analyze the dynamical process of this kind of geo-hazard, the Donghekou rockslide-debris flow is given as an example in this paper. This event, which killed 780 people, initiated at an elevation of 1300 m with a total long run-out distance of more than 2400 m. The slide mass is mainly composed of dolomite limestone and siliceous limestone of Sinian system, together with carbon slate and phyllite of Cambrian. During the processes from slide initiation to the final cessation of slide movement, five dynamic stages took place, here identified as the initiation stage, the acceleration of movement stage, the air-blast effect stage, the impact and redirection stage and the long runout slidematerial accumulation stage. Field investigations indicate that due to the effects of the earthquake, the dynamics of the Donghekou rockslide-debris flow are apparently controlled by geologic and tectonic conditions, the local geomorphological aspects of the terrain, and the microstructural and macroscopic mechanical properties of rocks which compose the slide mass. These three main factors which dictate the Donghekou rockslide-debris flow dynamics are discussed in detail in this paper, and significant results of field investigations and tests of materials are presented. The above dynamical processes are analyzed in this paper, and some useful conclusions have been gained.展开更多
In this study,we present a new method for the indirect integration of beam charges in external beam proton-induced X-ray emission and proton-induced c-ray emission(PIXE–PIGE) analysis.We recorded proton spectra backs...In this study,we present a new method for the indirect integration of beam charges in external beam proton-induced X-ray emission and proton-induced c-ray emission(PIXE–PIGE) analysis.We recorded proton spectra backscattered by a Kapton film extraction window in different sample situations and under different beam currents.We also simulated backscattering spectra using the simulation of backscattering spectra program(SIMNRA).We determined that in a specific geometrical arrangement,different sample situations did not significantly affect factor C_Q(the ratio between integral backscattering proton counts and integral beam charges).We also studied the reproducibility and beam current dependence of factor C_Q.The statistic factor of C_Q was28.95 ± 0.6 kilo counts/l C,with a relative standard deviation of 2.0 %.Significantly,in external beam PIXE–PIGE analysis,we were able to calculate beam charge integration from the integral backscattering proton counts in an energy region.展开更多
A compact pneumatic pulse-jet pump with a Venturi-like reverse flow diverter,which consists of a nozzle and diffuser,is designed for lifting and transporting a hazardous fluid through a narrow mounting hole.The pumpin...A compact pneumatic pulse-jet pump with a Venturi-like reverse flow diverter,which consists of a nozzle and diffuser,is designed for lifting and transporting a hazardous fluid through a narrow mounting hole.The pumping performance for a liquid mixture or a liquid-solid mixture is examined in terms of the effects of liquid viscosity,particle mass concentration,lifting height,and compression pressure.Results reveal that the pumping performance of the compact pneumatic pulse-jet pump is controlled by jet inertia and the flow resistance of the riser tube positioned after the diffuser.The capacity of the compact pneumatic pulse-jet pump increases with compression pressure and decreases with liquid viscosity.However,even for a liquid mixture with a high viscosity of 7.38 mPa·s,a pumping capacity of 170.7 L·h-1 was observed.For a liquid mixture,two dimensionless indices of performance were found to be the ratio of Euler numbers Euout/EuDV and the suction factor q.As the liquid-solid mixture was lifted to elevation of 6.74 m by the compact pump,the particle size distributions of the liquid-solid mixture in the tank and from the riser tube outlet were determined by a particle size analyzer and found to coincide well.展开更多
Cast stainless steels used in nuclear power plants suffer from fracture toughness losses owing to thermal aging after long-term service at temperatures ranging from 280–320°C. To study the thermal aging embrittl...Cast stainless steels used in nuclear power plants suffer from fracture toughness losses owing to thermal aging after long-term service at temperatures ranging from 280–320°C. To study the thermal aging embrittlement of Z3 CN20.09 M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 350, 380, and 400°C for up to 10000 h. Microhardness and Charpy impact energies were measured at different aging times. The microhardness of ferrite increased drastically over the initial aging time of 2000 h at 380 and 400°C and then slowly reached HV0.01 560. In contrast to this observed change in microhardness, Charpy impact energies sharply decreased after initial aging and then gradually reached a minimum value. Taking the microhardness of the ferrite phase as the parameter describing the thermal kinetics of the stainless steel samples, the activation energy of thermal aging was calculated to be 51 kJ/mol. Correlations between the thermal aging parameter, P, and ferrite microhardness and between P and Charpy impact energy were also analyzed. The results showed that the activation energy calculated from the ferrite microhardness is much more reasonable than that obtained using other parameters, such as chemical composition and impact energy.展开更多
In neutron and photon transport problems,anisotropic scattering is of great importance for the particle flux,especially when the angular flux has a strong forward peak in shielding analyses.The conventional Legendre e...In neutron and photon transport problems,anisotropic scattering is of great importance for the particle flux,especially when the angular flux has a strong forward peak in shielding analyses.The conventional Legendre expansion is widely used in discrete ordinates transport codes because of algebraic simplifications with spherical harmonics for the scattering source.However,negative cross sections caused by the finitely truncated expansion may give rise to a negative source and flux.A simple method is adopted,based on integrating functions of scattering moments,to evaluate anisotropy and convergence of expanded functions.A series of problems were designed with angular fluxes of different anisotropy,and numerical simulations were performed using the ARES transport code to study different treatments and algorithms for scattering.Results show that the diagonal transport approximation is more stable and obtains a similar accuracy with the extended approximation.A conservative fixup for the negative source could ensure particle balance and improve computational accuracy significantly for photon transport.The effect of anisotropic scattering is problem-dependent,and no distinct differences among various methods are observed for volume source problems with a continuous energy source.For beam source problems,flux results are sensitive to negative scattering functions,and strictly nonnegative cross sections need to be implemented.展开更多
基金Sponsored by the Independent Scientific Research Fund of China Nuclear Power Engineering Co.,Ltd(Grant No.KY1744).
文摘Blockage in the storage and transportation of waste resin is a difficult problem in the radioactive waste treatment process of nuclear power plants.In this study,in order to solve the problems of unstable resin transport concentration and easy blockage of conveying equipment and pipelines in nuclear power plants in China,a set of non⁃stirring conveying devices is developed,and theoretical calculations,simulation analysis and experimental verification are carried out.By transporting resin using the no stirring conveying device developed in this paper,it is not only to eliminate the risk of blockage and ensure the safety of transportation,but also to adjust the concentration of conveying resin to change the transport efficiency according to the operating conditions.The effective bearing rate of waste resin storage tank can be improved,so that the comprehensive performance of waste resin storage and transportation in nuclear power plants can be greatly improved.
基金the National Natural Science Foundation of China(No.51875209)the Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120060)the Open Funds of State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment。
文摘Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified.
文摘The sipping test devices are used to identify the defective fuel. The defective fuel can be identified by detecting the occurrence of the fission products that are entrained by the medium rising around the fuel rods. This project is the setting of the two kinds of the three sipping test devices to inspect the tightness of the irradiated fuel assembly from two units NPP (nuclear power plant). The in-mast sipping shared by two units is used for qualitative tightness test of each fuel assembly during refueling operation above the reactor. The two poolside sipping is used for quantitatively confirming the diagnosis of the in-mast sipping and identifying the tightness of the fuel at the side of the fuel storage pools of each unit after refueling. The project was implemented by research, design manufacture and calibration of these three devices and completed successfully with serious quality assurance and quality control. The performance of these devices is well demonstrated.
文摘An in-house code,CONTHAC-3D,was developed to calculate and analyze thermal-hydraulic phenomena in containments during severe accidents.CONTHAC-3D is a three-dimensional computational fluid dynamics code that can be applied to predict gas flow,diffusion,and steam condensation in a containment during a severe hypothetical accident,as well as to obtain an estimate of the local hydrogen concentration in various zones of the containment.CONTHAC-3D was developed using multiple models to simulate the features of the proprietary systems and equipment of HPR1000 and ACP100,such as the passive cooling system,passive autocatalytic recombiners and the passive air cooling system.To validate CONTHAC-3D,a GX6 test was performed at the Battelle Model Containment facility.The hydrogen concentration and temperature monitored by the GX6 test are accurately predicted by CONTHAC-3D.Subsequently,the hydrogen distribution in the HPR1000 containment during a severe accident was studied.The results show that the hydrogen removal rates calculated using CONTHAC-3D for different types of PARs agree well with the theoretical values,with an error of less than 1%.As the accident progresses,the hydrogen concentration in the lower compartment becomes higher than that in the large space,which implies that the lower compartment has a higher hydrogen risk than the dome and large space at a later stage of the accident.The amount of hydrogen removed by the PARs placed on the floor of the compartment is small;therefore,raising the installation height of these recombiners appropriately is recommended.However,we do not recommend installing all autocatalytic recombiners at high positions.The study findings in regard to the hydrogen distribution in the HPR1000 containment indicate that CONTHAC-3D can be applied to the study of hydrogen risk containment.
基金the High-Performance Computing Platform of Beijing University of Chemical Technology(BUCT)for supporting this papersupported by the Fundamental Research Funds for the Central Universities(JD2319)+2 种基金the CNOOC Technical Cooperation Project(ZX2022ZCTYF7612)the National Natural Science Foundation of China(51775029,52004014)the Chinese Universities Scientific Fund(XK2020-04)。
文摘A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adhere to the wire mesh packing in the rotor,thus resulting in an imbalance in the vibration of the rotor,which may cause serious damage to the bearing and material leakage.This study proposes a model prediction for estimating the bearing residual life of a rotating packed bed based on rotor imbalance response analysis.This method is used to determine the influence of the mass on the imbalance in the vibration of the rotor on bearing damage.The major influence on rotor vibration was found to be exerted by the imbalanced mass and its distribution radius,as revealed by the results of orthogonal experiments.Through implementing finite element analysis,the imbalance response curve for the rotating packed bed rotor was obtained,and a correlation among rotor imbalance mass,distribution radius of imbalance mass,and bearing residue life was established via data fitting.The predicted value of the bearing life can be used as the reference basis for an early safety warning of a rotating packed bed to effectively avoid accidents.
基金supported by the National Natural Science Foundation of China (51906133).
文摘This study presents a proposed method for assessing the condition and predicting the future status of condensers operating in seawater over an extended period.The aim is to address the problems of scaling and corrosion,which lead to increased loss of cold resources.The method involves utilising a set of multivariate feature parameters associated with the condenser as input for evaluation and trend prediction.This methodology offers a precise means of determining the optimal timing for condenser cleaning,with the ultimate goal of improving its overall performance.The proposed approach involves the integration of the analytic network process with subjective expert experience and the entropy weightmethod with objective big data analysis to develop a fusion health degreemodel.The mathematical model is constructed quantitatively using the improved Mahalanobis distance.Furthermore,a comprehensive prediction model is developed by integrating the improved Informer model and Markov error correction.This model takes into account the health status of the equipment and several influencing factors,includingmultivariate feature characteristics.This model facilitates the objective examination and prediction of the progression of equipment deterioration trends.The present study involves the computation and verification of the field time series data,which serves to demonstrate the accuracy of the condenser health-related models proposed in this research.These models effectively depict the real condition and temporal variations of the equipment,thus offering a valuable method for determining the precise cleaning time required for the condenser.
基金supported by the National Natural Science Foundation of China(No.12075067)the National Key R&D Program of China(No.2018YFE0180900)。
文摘To benefit from recent advances in modeling and computational algorithms,as well as the availability of new covariance data,sensitivity and uncertainty analyses are needed to quantify the impact of uncertain sources on the design parameters of small prismatic high-temperature gascooled reactors(HTGRs).In particular,the contribution of nuclear data to the k_(eff)uncertainty is an important part of the uncertainty analysis of small-sized HTGR physical calculations.In this study,a small-sized HTGR designed by China Nuclear Power Engineering Co.,Ltd.was selected for k_(eff)uncertainty analysis during full lifetime burnup calculations.Models of the cold zero power(CZP)condition and full lifetime burnup process were constructed using the Reactor Monte Carlo Code RMC for neutron transport calculation,depletion calculation,and sensitivity and uncertainty analysis.For the sensitivity analysis,the Contribution-Linked eigenvalue sensitivity/Uncertainty estimation via Track length importance Characterization(CLUTCH)method was applied to obtain sensitive information,and the "sandwich" method was used to quantify the k_(eff)uncertainty.We also compared the k_(eff)uncertainties to other typical reactors.Our results show that ^(235)U is the largest contributor to k_(eff)uncertainty for both the CZP and depletion conditions,while the contribution of ^(239)Pu is not very significant because of the design of low discharge burnup.It is worth noting that the radioactive capture reaction of ^(28)Si significantly contributes to the k_(eff)uncertainty owing to its specific fuel design.However,the k_(eff)uncertainty during the full lifetime depletion process was relatively stable,only increasing by 1.12%owing to the low discharge burnup design of small-sized HTGRs.These numerical results are beneficial for neutronics design and core parameters optimization in further uncertainty propagation and quantification study for small-sized HTGR.
基金supported by cooperation projects between an enterprise(CNPE)and a research institute(ASIPP)(Y15HX16706).
文摘Nuclear security usually requires the simultaneous detection of neutrons and gamma rays.With the development of crystalline materials in recent years,Cs2LiLaBr6(CLLB)dual-readout detectors have attracted extensive attention from researchers,where real-time neutron/gamma pulse discrimination is the critical factor among detector performance parameters.This study investigated the discrimination performance of the charge comparison,amplitude comparison,time comparison,and pulse gradient_(m)ethods and the effects of a Sallen–Key filter on their performance.Experimental results show that the figure of merit(FOM)of all four methods is improved by proper filtering.Among them,the charge comparison method exhibits excellent noise resistance;moreover,it is the most_(s)uitable method of real-time discrimination for CLLB detectors.However,its discrimination performance depends on the parameters t_(s),t_(m),and t_(e).When t_(s)corresponds to the moment at which the pulse is at 10%of its peak value,t_(e)requires a delay of only 640–740 ns compared to t_(s),at which time the potentially optimal FOM of the charge comparison method at 3.1–3.3 MeV is greater than 1.46.The FOM obtained using the t_(m)value calculated by a proposed maximized discrimination difference model(MDDM)and the potentially optimal FOM differ by less than 3.9%,indicating that the model can provide good guidance for parameter selection in the charge comparison method.
基金supported by China Nuclear Power Engineering Co.,Ltd.Scientific Research Project(No.KY22104)the fellowship of China Postdoctoral Science Foundation(No.2022M721793).
文摘The inter-cycle correlation of fission source distributions(FSDs)in the Monte Carlo power iteration process results in variance underestimation of tallied physical quantities,especially in large local tallies.This study provides a mesh-free semiquantitative variance underestimation elimination method to obtain a credible confidence interval for the tallied results.This method comprises two procedures:Estimation and Elimination.The FSD inter-cycle correlation length is estimated in the Estimation procedure using the Sliced Wasserstein distance algorithm.The batch method was then used in the elimination procedure.The FSD inter-cycle correlation length was proved to be the optimum batch length to eliminate the variance underestimation problem.We exemplified this method using the OECD sphere array model and 3D PWR BEAVRS model.The results showed that the average variance underestimation ratios of local tallies declined from 37 to 87%to within±5%in these models.
文摘Efficient methods for incorporating engineering experience into the intelligent generation and optimization of shear wall structures are lacking,hindering intelligent design performance assessment and enhancement.This study introduces an assessment method used in the intelligent design and optimization of shear wall structures that effectively combines mechanical analysis and formulaic encoding of empirical rules.First,the critical information about the structure was extracted through data structuring.Second,an empirical rule assessment method was developed based on the engineer's experience and design standards to complete a preliminary assessment and screening of the structure.Subsequently,an assessment method based on mechanical performance and material consumption was used to compare different structural schemes comprehensively.Finally,the assessment effectiveness was demonstrated using a typical case.Compared to traditional assessment methods,the proposed method is more comprehensive and significantly more efficient,promoting the intelligent transformation of structural design.
基金sponsored by the National Natural Science Foundation of China(Grant No.52073176)the Shenzhen International Cooperation Research Science and Technology Program(No.GJHZ20200731095203011).
文摘Nuclear power plays a key role as renewable energy in alleviating the worldwide energy shortage.The material degradation caused by high-temperature and high-flux neutron irradiation is the most concerning issue for nuclear reactor safety.A large number of He atoms produced through the(n,α)transmutation reaction diffuse and migrate in metals and accumulate to form He bubbles because of the extremely low solubility of He atoms in metal materials.The helium bubbles gather at the grain boundary or grain to cause swelling,hardening,embrittlement,and other damages to the in-core structural components.This paper mainly summarizes the research progress on He irradiation in steel and iron-based alloys,including the diffusion and accumulation of He atoms,the nucleation and growth of He bubbles,and the microstructure and macroscopic degradation of material performance caused by He irradiation.The mechanism of helium irradiation-induced corrosion in steel and iron-based alloys in recent years is reviewed as well.Moreover,the investigations on irradiation performance in additive manufactured stainless steels are summarized,and the mechanism of irradiation resistance is prospected.
文摘1.Introduction HPR1000 is an advanced mega-kilowatt-class third-generation pressurized water reactor(PWR)nuclear power technology developed by China,based on more than 30 years of experience in the scientific research,design,equipment manufacturing,construction,and operation of nuclear power.
文摘After the first concrete was poured on December 9, 2012 at the Shidao Bay site in Rongcheng, Shandong Province, China, the construction of the reactor building for the world's first high-temperature gas- cooled reactor pebble-bed module (HTR-PM) demonstration power plant was completed in June, 2015. Installation of the main equipment then began, and the power plant is currently progressing well to- ward connecting to the grid at the end of 2017. The thermal power of a single HTR-PM reactor module is 250 MW,h, the helium temperatures at the reactor core inlet/outlet are 250/750 ℃, and a steam of 13.25 MPa/567 ~C is produced at the steam generator outlet. Two HTR-PM reactor modules are connect- ed to a steam turbine to form a 210 MW nuclear power plant. Due to China's industrial capability, we were able to overcome great difficulties, manufacture first-of-a-kind equipment, and realize series ma- jor technological innovations. We have achieved successful results in many aspects, including planning and implementing R&D, establishing an industrial partnership, manufacturing equipment, fuel produc- tion, licensing, site preparation, and balancing safety and economics; these obtained experiences may also be referenced by the global nuclear community.
文摘HPR1000 is an advanced nuclear power plant(NPP)with the significant feature of an active and passive safety design philosophy,developed by the China National Nuclear Corporation.On one hand,it is an evolutionary design based on proven technology of the existing pressurized water reactor NPP;on the other hand,it incorporates advanced design features including a 177-fuel-assembly core loaded with CF3 fuel assemblies,active and passive safety systems,comprehensive severe accident prevention and mitigation measures,enhanced protection against external events,and improved emergency response capability.Extensive verification experiments and tests have been performed for critical innovative improvements on passive systems,the reactor core,and the main equipment.The design of HPR1000fulfills the international utility requirements for advanced light water reactors and the latest nuclear safety requirements,and addresses the safety issues relevant to the Fukushima accident.Along with its outstanding safety and economy,HPR1000 provides an excellent and practicable solution for both domestic and international nuclear power markets.
基金National Natural Science Funds for Distinguished Young Scholar under Grant No.51009086Hubei Key Laboratory of Roadway Bridge and Structure Engineering under Grant No.DQJJ201313Major State Basic Research Development Program of China(973 Program)under Grant No.2010CB732001
文摘Blast-induced dominant vibration frequency (DVF) involves a complex, nonlinear and small sample system considering rock properties, blasting parameters and topography. In this study, a combination of grey relational analysis and dimensional analysis procedures for prediction of dominant vibration frequency are presented. Six factors are selected from extensive effect factor sequences based on grey relational analysis, and then a novel blast-induced dominant vibration frequency prediction is obtained by dimensional analysis. In addition, the prediction is simplified by sensitivity analysis with 195 experimental blast records. Validation is carried out for the proposed formula based on the site test database of the first- period blasting excavation in the Guangdong Lufeng Nuclear Power Plant (GLNPP). The results show the proposed approach has a higher fitting degree and smaller mean error when compared with traditional predictions.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No. 40802067)the National Basic Research Program of China (973 program, Grant No.2008CB425803)+1 种基金the Basic Scientific Research Operating Expenses of Institute of Geomechanics, CAGS (Grant No. DZLXJK200805)the Land and Natural Resources of China (Grant No. 1212010914025)
文摘Among the geo-hazards caused by the great Wenchuan Earthquake, the rapid and long runout rockslide-debris flow is of primary concern due to the large volume of displaced material and the resultant catastrophic impacts to the landscape and socioeconomic structure. In order to analyze the dynamical process of this kind of geo-hazard, the Donghekou rockslide-debris flow is given as an example in this paper. This event, which killed 780 people, initiated at an elevation of 1300 m with a total long run-out distance of more than 2400 m. The slide mass is mainly composed of dolomite limestone and siliceous limestone of Sinian system, together with carbon slate and phyllite of Cambrian. During the processes from slide initiation to the final cessation of slide movement, five dynamic stages took place, here identified as the initiation stage, the acceleration of movement stage, the air-blast effect stage, the impact and redirection stage and the long runout slidematerial accumulation stage. Field investigations indicate that due to the effects of the earthquake, the dynamics of the Donghekou rockslide-debris flow are apparently controlled by geologic and tectonic conditions, the local geomorphological aspects of the terrain, and the microstructural and macroscopic mechanical properties of rocks which compose the slide mass. These three main factors which dictate the Donghekou rockslide-debris flow dynamics are discussed in detail in this paper, and significant results of field investigations and tests of materials are presented. The above dynamical processes are analyzed in this paper, and some useful conclusions have been gained.
基金supported by the Beijing Natural Science Funds(No.1142006)
文摘In this study,we present a new method for the indirect integration of beam charges in external beam proton-induced X-ray emission and proton-induced c-ray emission(PIXE–PIGE) analysis.We recorded proton spectra backscattered by a Kapton film extraction window in different sample situations and under different beam currents.We also simulated backscattering spectra using the simulation of backscattering spectra program(SIMNRA).We determined that in a specific geometrical arrangement,different sample situations did not significantly affect factor C_Q(the ratio between integral backscattering proton counts and integral beam charges).We also studied the reproducibility and beam current dependence of factor C_Q.The statistic factor of C_Q was28.95 ± 0.6 kilo counts/l C,with a relative standard deviation of 2.0 %.Significantly,in external beam PIXE–PIGE analysis,we were able to calculate beam charge integration from the integral backscattering proton counts in an energy region.
文摘A compact pneumatic pulse-jet pump with a Venturi-like reverse flow diverter,which consists of a nozzle and diffuser,is designed for lifting and transporting a hazardous fluid through a narrow mounting hole.The pumping performance for a liquid mixture or a liquid-solid mixture is examined in terms of the effects of liquid viscosity,particle mass concentration,lifting height,and compression pressure.Results reveal that the pumping performance of the compact pneumatic pulse-jet pump is controlled by jet inertia and the flow resistance of the riser tube positioned after the diffuser.The capacity of the compact pneumatic pulse-jet pump increases with compression pressure and decreases with liquid viscosity.However,even for a liquid mixture with a high viscosity of 7.38 mPa·s,a pumping capacity of 170.7 L·h-1 was observed.For a liquid mixture,two dimensionless indices of performance were found to be the ratio of Euler numbers Euout/EuDV and the suction factor q.As the liquid-solid mixture was lifted to elevation of 6.74 m by the compact pump,the particle size distributions of the liquid-solid mixture in the tank and from the riser tube outlet were determined by a particle size analyzer and found to coincide well.
基金financially supported by the China General Nuclear Power Group
文摘Cast stainless steels used in nuclear power plants suffer from fracture toughness losses owing to thermal aging after long-term service at temperatures ranging from 280–320°C. To study the thermal aging embrittlement of Z3 CN20.09 M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 350, 380, and 400°C for up to 10000 h. Microhardness and Charpy impact energies were measured at different aging times. The microhardness of ferrite increased drastically over the initial aging time of 2000 h at 380 and 400°C and then slowly reached HV0.01 560. In contrast to this observed change in microhardness, Charpy impact energies sharply decreased after initial aging and then gradually reached a minimum value. Taking the microhardness of the ferrite phase as the parameter describing the thermal kinetics of the stainless steel samples, the activation energy of thermal aging was calculated to be 51 kJ/mol. Correlations between the thermal aging parameter, P, and ferrite microhardness and between P and Charpy impact energy were also analyzed. The results showed that the activation energy calculated from the ferrite microhardness is much more reasonable than that obtained using other parameters, such as chemical composition and impact energy.
基金supported by the National Natural Science Foundation of China(Nos.11505059,11575061)the Fundamental Research Funds for Central Universities(No.2017XS087)
文摘In neutron and photon transport problems,anisotropic scattering is of great importance for the particle flux,especially when the angular flux has a strong forward peak in shielding analyses.The conventional Legendre expansion is widely used in discrete ordinates transport codes because of algebraic simplifications with spherical harmonics for the scattering source.However,negative cross sections caused by the finitely truncated expansion may give rise to a negative source and flux.A simple method is adopted,based on integrating functions of scattering moments,to evaluate anisotropy and convergence of expanded functions.A series of problems were designed with angular fluxes of different anisotropy,and numerical simulations were performed using the ARES transport code to study different treatments and algorithms for scattering.Results show that the diagonal transport approximation is more stable and obtains a similar accuracy with the extended approximation.A conservative fixup for the negative source could ensure particle balance and improve computational accuracy significantly for photon transport.The effect of anisotropic scattering is problem-dependent,and no distinct differences among various methods are observed for volume source problems with a continuous energy source.For beam source problems,flux results are sensitive to negative scattering functions,and strictly nonnegative cross sections need to be implemented.