China’s economy has maintained a steady and rapid development, the growth rate of automobiles and gasoline output and sales volume is far beyond the national economic growth rate over the same period, and much higher...China’s economy has maintained a steady and rapid development, the growth rate of automobiles and gasoline output and sales volume is far beyond the national economic growth rate over the same period, and much higher than that in developed countries. According展开更多
Geologists agree that the collision of the Indian and Asian plates caused uplift of the Tibet Plateau. However, controversy still exists regarding the modes and mechanisms of the Tibetan Plateau uplift. Geology has re...Geologists agree that the collision of the Indian and Asian plates caused uplift of the Tibet Plateau. However, controversy still exists regarding the modes and mechanisms of the Tibetan Plateau uplift. Geology has recorded this uplift well in the Qaidam Basin. This paper analyzes the tectonic and sedimentary evolution of the western Qaidam Basin using sub-surface seismic and drill data. The Cenozoic intensity and history of deformation in the Qaidam Basin have been reconstructed based on the tectonic developments, faults growth index, sedimentary facies variations, and the migration of the depositional depressions. The changes in the sedimentary facies show that lakes in the western Qaidam Basin had gone from inflow to still water deposition to withdrawal. Tectonic movements controlled deposition in various depressions, and the depressions gradually shifted southeastward. In addition, the morphology of the surface structures in the western Qaidam Basin shows that the Cenozoic tectonic movements controlled the evolution of the Basin and divided it into (a) the southern fault terrace zone, (b) a central Yingxiongling orogenic belt, and (c) the northern fold-thrust belt; divided by the XI fault (Youshi fault) and Youbei fault, respectively. The field data indicate that the western Qaidam Basin formed in a Cenozoic compressive tectonic environment caused by the India--Asia plate collision. Further, the Basin experienced two phases of intensive tectonic deformation. The first phase occurred during the Middle Eocene--Early Miocene (Xia Ganchaigou Fm. and Shang Ganchaigou Fro., 43.8- 22 Ma), and peaked in the Early Oligocene (Upper Xia Ganchaigou Fro., 31.5 Ma). The second phase occurred between the Middle Miocene and the Present (Shang Youshashan Fro. and Qigequan Fro., 14.9-0 Ma), and was stronger than the first phase. The tectonic--sedimentary evolution and the orienta- tion of surface structures in the western Qaidam Basin resulted from the Tibetan Plateau uplift, and recorded the periodic northward growth of the Plateau. Recognizing this early tectonic--sedimentary evolution supports the previous conclusion that northern Tibet responded to the collision between India and Asia shortly after its initiation. However, the current results reveal that northern Tibet also experi- enced another phase of uplift during the late Neogene. The effects of these two stages of tectonic activity combined to produce the current Tibetan Plateau.展开更多
A Fourier Transform Infrared Spectroscopic(FTIR)method involving a Fe2O3 flux was used to learn how China's coal ash melts.The relationship between ash fusion temperature and chemical composition,as well as the ef...A Fourier Transform Infrared Spectroscopic(FTIR)method involving a Fe2O3 flux was used to learn how China's coal ash melts.The relationship between ash fusion temperature and chemical composition,as well as the effects of Fe2O3 flux on the ash fusion temperature were studied.The relationship between ash fusion temperature and chemical composition,mineralogical phases and functional groups was analyzed with the FTIR method.The results show that the ash fusion temperature is related to the location and transmittance of certain absorption peaks,which is of great significance for the study of ash behavior.展开更多
Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control e...Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms.展开更多
Catalysis is one of the most cross-cutting technologies in the chemical industry, intensely influenc-ing our daily society. Its practical application is closely related to the engineering disciplines. At present, the ...Catalysis is one of the most cross-cutting technologies in the chemical industry, intensely influenc-ing our daily society. Its practical application is closely related to the engineering disciplines. At present, the academic and industrial research on catalysis in our country has made great break-throughs in fields like hydrocarbon production, oil-quality upgrading processes, green chemical engineering, and other energy and chemical users of catalysis. In this paper, we attempt to summa-rize the industrial catalysis achievements and present a discussion on the direction and the devel-opment strategy for catalysis, based on economic and social demands.展开更多
文摘China’s economy has maintained a steady and rapid development, the growth rate of automobiles and gasoline output and sales volume is far beyond the national economic growth rate over the same period, and much higher than that in developed countries. According
基金co-supposed by the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KZCX2-EW-ON112)Open Fund of Key Laboratory of Petroleum Resources Research of the Chinese Academy of Sciences(No.KFJJ2010-07)
文摘Geologists agree that the collision of the Indian and Asian plates caused uplift of the Tibet Plateau. However, controversy still exists regarding the modes and mechanisms of the Tibetan Plateau uplift. Geology has recorded this uplift well in the Qaidam Basin. This paper analyzes the tectonic and sedimentary evolution of the western Qaidam Basin using sub-surface seismic and drill data. The Cenozoic intensity and history of deformation in the Qaidam Basin have been reconstructed based on the tectonic developments, faults growth index, sedimentary facies variations, and the migration of the depositional depressions. The changes in the sedimentary facies show that lakes in the western Qaidam Basin had gone from inflow to still water deposition to withdrawal. Tectonic movements controlled deposition in various depressions, and the depressions gradually shifted southeastward. In addition, the morphology of the surface structures in the western Qaidam Basin shows that the Cenozoic tectonic movements controlled the evolution of the Basin and divided it into (a) the southern fault terrace zone, (b) a central Yingxiongling orogenic belt, and (c) the northern fold-thrust belt; divided by the XI fault (Youshi fault) and Youbei fault, respectively. The field data indicate that the western Qaidam Basin formed in a Cenozoic compressive tectonic environment caused by the India--Asia plate collision. Further, the Basin experienced two phases of intensive tectonic deformation. The first phase occurred during the Middle Eocene--Early Miocene (Xia Ganchaigou Fm. and Shang Ganchaigou Fro., 43.8- 22 Ma), and peaked in the Early Oligocene (Upper Xia Ganchaigou Fro., 31.5 Ma). The second phase occurred between the Middle Miocene and the Present (Shang Youshashan Fro. and Qigequan Fro., 14.9-0 Ma), and was stronger than the first phase. The tectonic--sedimentary evolution and the orienta- tion of surface structures in the western Qaidam Basin resulted from the Tibetan Plateau uplift, and recorded the periodic northward growth of the Plateau. Recognizing this early tectonic--sedimentary evolution supports the previous conclusion that northern Tibet responded to the collision between India and Asia shortly after its initiation. However, the current results reveal that northern Tibet also experi- enced another phase of uplift during the late Neogene. The effects of these two stages of tectonic activity combined to produce the current Tibetan Plateau.
基金Projects 2003001 supported by the Key Project of Huainan City405099 by the Project of Science Research and Development of China Petroleum & Chemical Corporation
文摘A Fourier Transform Infrared Spectroscopic(FTIR)method involving a Fe2O3 flux was used to learn how China's coal ash melts.The relationship between ash fusion temperature and chemical composition,as well as the effects of Fe2O3 flux on the ash fusion temperature were studied.The relationship between ash fusion temperature and chemical composition,mineralogical phases and functional groups was analyzed with the FTIR method.The results show that the ash fusion temperature is related to the location and transmittance of certain absorption peaks,which is of great significance for the study of ash behavior.
基金supported by Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20091102120038)
文摘Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms.
基金supported by National Key Basic Research Program of China (2013CB934101, 2009CB623500)the National Natural Science Foundation of China (21433002, 21573046)the National Key Research and Development Program of China (2016YFB0701100)~~
文摘Catalysis is one of the most cross-cutting technologies in the chemical industry, intensely influenc-ing our daily society. Its practical application is closely related to the engineering disciplines. At present, the academic and industrial research on catalysis in our country has made great break-throughs in fields like hydrocarbon production, oil-quality upgrading processes, green chemical engineering, and other energy and chemical users of catalysis. In this paper, we attempt to summa-rize the industrial catalysis achievements and present a discussion on the direction and the devel-opment strategy for catalysis, based on economic and social demands.