Relying on the construction management of Hangzhouxi Railway Station,this paper analyses the comprehensive application of intelligent construction technology and the establishment of the common data environment(CDE)by...Relying on the construction management of Hangzhouxi Railway Station,this paper analyses the comprehensive application of intelligent construction technology and the establishment of the common data environment(CDE)by using BIM technology.This paper gives the idea that such issues are deeply explored as large-span curved surface structure improvement,steel structure construction monitoring,special-shaped ticket check canopy construction,prefabricated machine room construction,grid construction management,etc.so as to form an intelligent construction management system based on BIM technology.The system has achieved good application results in economic benefits,social benefits and environmental benefits,which can promote the gradual transformation to a more digitalized,networked and intelligent Hangzhouxi Railway Station,and lay a solid foundation for achieving the construction goals of controllable construction period,excellent quality,green and low carbon,etc.展开更多
As the first major transport infirastructure in Xiong'an New Area,Beijing-Xiong an Intercity Railway is an important step for China State Railway Group Co.A Ltd.to quickly implement the major strategic plan of CPC...As the first major transport infirastructure in Xiong'an New Area,Beijing-Xiong an Intercity Railway is an important step for China State Railway Group Co.A Ltd.to quickly implement the major strategic plan of CPC Central Committee and the State Council.for the establishment of Xiong'an New Area.Xiong'an Station with double-floor spacious waiting areas and the wonderfiul integration of overpass and station building is the first modern integrated transport hub of this kind in China.Based on the characteristics of Xiong'an Station and in the light of the relevant new theories,methods and technologies,systematic studies and innovative practices on the new concept of building up a"well-connected,filly-integrated,environmen-frindly,passenger-oriented,economically-efficient,uurally-rich,intelligent and convenient"passenger station are carried oul,which achieve good results of application and help accumulate valuable experiences for the construction of passenger stations of Chinese high-speed railways in the new era.展开更多
Based on the installation of the roof membrane of Lusail Stadium which is the main stadium of Qatar World Cup in 2022, a series of key technical challenges in the design and construction of the roof PTFE membrane of l...Based on the installation of the roof membrane of Lusail Stadium which is the main stadium of Qatar World Cup in 2022, a series of key technical challenges in the design and construction of the roof PTFE membrane of large stadiums are studied. Based on the analysis of the roof cable net system, the study formulated the overall sequence of membrane installation, and defined the construction method of membrane lifting and unfolding. Focusing on membrane fixing techniques with the tension rings, compression rings, and horizontal cable nodes, it also optimized membrane connection methods with arch and horizontal cable, and provided waterproof construction methods. According to the findings, the construction of stadium roof membranes should follow a logical sequence. The membranes’ fixing, connection and waterproof construction will have an important impact on the final quality.展开更多
In line with the new concept of building up a“well-connected,fullyi integrated,environment-friendlypassenger-oriented,economically-efficient,culturally-rich,intelligent and convenient”railway station and the constru...In line with the new concept of building up a“well-connected,fullyi integrated,environment-friendlypassenger-oriented,economically-efficient,culturally-rich,intelligent and convenient”railway station and the construction requirements of"elaborate,fine and exquisite construction of excellent passenger stations" put forward by China State Railway Group Co.Ltd.,design optimization and innovation are carried out in the construction of Nantongxi Railway Station and Pingtan Station in the aspects offunctional layout,decoration style,cultural enhancement,construction materials to be used,details treatment of the station buildings and the use of photoelectric technology,focusing on the consideration and research for furrther enhancing cultural confidence,deeply integrating into the regional features,inheriting historical context,innovating artistic expression,trying diversified integration,and exploring the use of science and technology in the contexl 0f the new era,and thus devoting to the construction of railway passenger stations in the new era which will meet the growing needs of the people for a better life.展开更多
Pervious concrete is a special type of concrete that is of high porosity and contains no or a small amount of fine aggregate,and it is an important basic material for sponge city construction.The presence of a large n...Pervious concrete is a special type of concrete that is of high porosity and contains no or a small amount of fine aggregate,and it is an important basic material for sponge city construction.The presence of a large number of connected pores inside pervious concrete leads to a marked difference in durability failure mechanism compared with that of ordinary concrete.In this study,the frost resistance and anti-clogging of pervious concrete were introduced in detail,and the methods to improve their performance were summarized systematically.The cracking pattern of pervious concrete is influenced by geometric characteristics and three-dimensional morphological features of pores,resulting in its crack generation,development,and geometry being significantly different from those of ordinary concrete,thus leading to different freeze-thaw cycle mechanisms.In addition,due to its different pore structure compared to ordinary concrete,three types of clogging mechanisms,affecting the long-term permeability of pervious concrete were elaborated systematically(i.e.,physical clogging,biological clogging,and chemical clogging).And the ways to improve the anti-clogging of pervious concrete are systematically presented from multiple perspectives.Finally,in order to broaden the engineering applications of pervious concrete,some research proposals are presented in this study.展开更多
Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the norm...Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the normal operation of railway lines. This study is to obtain the influencing rules of freeze-thaw on the dynamic properties (dynamic strain, confining pressure and compactness) of silty sand. Based on an amount of inner tests, the dynamic modulus and damping ratio properties of silty soil subjected to repeated freeze-thaw cycles were deeply researched and analyzed. The results are as follows: At the same dynamic strain, the relationship of dynamic stress and freeze-thaw cycles presents negative cor- relation, and the relationship of dynamic stress, confining pressure and compactness present positive correlation. The dynamic modulus double decreases while the damping ratio double increases with incremental increase in dynamic strain. The dynamic modulus sharply decreases while the damping ratio increases with incremental increase in freeze-thaw cycles, and then the changes level off after six freeze-thaw cycles. The dynamic modulus increases while the damping ratio decreases as the confining pressure and compactness increase at the same strain level.展开更多
High temperature rutting is a typical highway damage in Xinjiang, China, and its trigger process usually has a close relationship with characteristics of road temperature distribution. A numerical model of earth-atmos...High temperature rutting is a typical highway damage in Xinjiang, China, and its trigger process usually has a close relationship with characteristics of road temperature distribution. A numerical model of earth-atmosphere coupling heat transfer on a typical section of the Beijing-Xinjiang Expressway(G7) from Wutong Daquan to Yiwu was established in this work. Spatiotemporal characteristics of pavement structure layer temperature distribution, frequency and duration times of road surface high temperature from May 1 to September 30 are statistically studied. The effects of wind speed, weather and air temperature on asphalt layer and pavement temperature are analyzed. The results show that:(1) Spatial and temporal temperature distribution characteristics of pavement structural layers are greatly affected by the coupled earth-atmosphere heat transfer process. Surface temperature increases along the airflow direction and daily temperature variation of the pavement structure layer decreases with an increase of depth.(2) G7 expressway will face the challenge of high rutting damage. The proportion of temperature higher than 50 ℃ for pavement surface and asphalt upper layer both exceeds 50%and high temperature of road lasts for more than six hours in numerous days.(3) High temperatures of asphalt pavement are usually associated with low ambient wind speeds, while the wind flow has little cooling effect when the road surface temperature is relative high. Weather conditions have a significant impact on temperature of the road surface. The probability of high temperature in sunny days is obviously higher than other weather conditions.(4) Pavement temperature rises as air temperature rises. When air temperature is higher than 30 °C, the proportion of pavement daily maximum temperature over softening point reaches up to 78%.展开更多
Indoor thermal comfort is essential as it improves living standards.Activity scenarios of personnel are in the process of a dynamic change.In most interior spaces with fixed working stations,people directly blown by c...Indoor thermal comfort is essential as it improves living standards.Activity scenarios of personnel are in the process of a dynamic change.In most interior spaces with fixed working stations,people directly blown by cold air have a poor thermal experience.Therefore,to meet the differentiated environmental demands,one challenge is to explore novel ventilation strategies to satisfy the changing environmental needs.An adaptive strategy,multi-vent module-based adaptive ventilation(MAV),was designed to increase the adjustability of air distribution and better adapt to variable demands.A classroom was chosen as a representative model with multiple scenarios during its use.Simulations were conducted to verify the three-level control effect of MAV on improving the thermal environment.The results revealed that different vent solutions create different airflow patterns and thermal environments,which can be matched to the scenarios.The scale for ventilation efficiency No.4,which measured the influence scope of supply air,was used to evaluate the zoning division control in MAV.The space under the charge of a concerned MAV module showed a higher SVE4 than that at other zones.This implied that the zoning division can be effectively implemented.Thermal comfort measured using the air diffusion performance index,predicted mean vote,and draught rate showed that the application of MAV is better than that of the fixed MV mode,and the discomfort experienced when exposed to cold air can be avoided.It is believed that these results will help extend the research of adaptive ventilation strategies.展开更多
文摘Relying on the construction management of Hangzhouxi Railway Station,this paper analyses the comprehensive application of intelligent construction technology and the establishment of the common data environment(CDE)by using BIM technology.This paper gives the idea that such issues are deeply explored as large-span curved surface structure improvement,steel structure construction monitoring,special-shaped ticket check canopy construction,prefabricated machine room construction,grid construction management,etc.so as to form an intelligent construction management system based on BIM technology.The system has achieved good application results in economic benefits,social benefits and environmental benefits,which can promote the gradual transformation to a more digitalized,networked and intelligent Hangzhouxi Railway Station,and lay a solid foundation for achieving the construction goals of controllable construction period,excellent quality,green and low carbon,etc.
文摘As the first major transport infirastructure in Xiong'an New Area,Beijing-Xiong an Intercity Railway is an important step for China State Railway Group Co.A Ltd.to quickly implement the major strategic plan of CPC Central Committee and the State Council.for the establishment of Xiong'an New Area.Xiong'an Station with double-floor spacious waiting areas and the wonderfiul integration of overpass and station building is the first modern integrated transport hub of this kind in China.Based on the characteristics of Xiong'an Station and in the light of the relevant new theories,methods and technologies,systematic studies and innovative practices on the new concept of building up a"well-connected,filly-integrated,environmen-frindly,passenger-oriented,economically-efficient,uurally-rich,intelligent and convenient"passenger station are carried oul,which achieve good results of application and help accumulate valuable experiences for the construction of passenger stations of Chinese high-speed railways in the new era.
文摘Based on the installation of the roof membrane of Lusail Stadium which is the main stadium of Qatar World Cup in 2022, a series of key technical challenges in the design and construction of the roof PTFE membrane of large stadiums are studied. Based on the analysis of the roof cable net system, the study formulated the overall sequence of membrane installation, and defined the construction method of membrane lifting and unfolding. Focusing on membrane fixing techniques with the tension rings, compression rings, and horizontal cable nodes, it also optimized membrane connection methods with arch and horizontal cable, and provided waterproof construction methods. According to the findings, the construction of stadium roof membranes should follow a logical sequence. The membranes’ fixing, connection and waterproof construction will have an important impact on the final quality.
文摘In line with the new concept of building up a“well-connected,fullyi integrated,environment-friendlypassenger-oriented,economically-efficient,culturally-rich,intelligent and convenient”railway station and the construction requirements of"elaborate,fine and exquisite construction of excellent passenger stations" put forward by China State Railway Group Co.Ltd.,design optimization and innovation are carried out in the construction of Nantongxi Railway Station and Pingtan Station in the aspects offunctional layout,decoration style,cultural enhancement,construction materials to be used,details treatment of the station buildings and the use of photoelectric technology,focusing on the consideration and research for furrther enhancing cultural confidence,deeply integrating into the regional features,inheriting historical context,innovating artistic expression,trying diversified integration,and exploring the use of science and technology in the contexl 0f the new era,and thus devoting to the construction of railway passenger stations in the new era which will meet the growing needs of the people for a better life.
基金financially supported by the National Natural Science Foundation of China(52208246,U22A20122)the Natural Science Foundation of Hunan Province(2023JJ40142)+3 种基金the Natural Science Foundation of Changsha(kq2202160)the Provincial Special Project for the Construction of National Sustainable Development Agenda Innovation Demonstration Zone in Chenzhou City(2023sfq50)the Fundamental Research Funds for the Central Universities(531118010493)Training Program for Excellent Young Innovators of Changsha(kq2107010)。
文摘Pervious concrete is a special type of concrete that is of high porosity and contains no or a small amount of fine aggregate,and it is an important basic material for sponge city construction.The presence of a large number of connected pores inside pervious concrete leads to a marked difference in durability failure mechanism compared with that of ordinary concrete.In this study,the frost resistance and anti-clogging of pervious concrete were introduced in detail,and the methods to improve their performance were summarized systematically.The cracking pattern of pervious concrete is influenced by geometric characteristics and three-dimensional morphological features of pores,resulting in its crack generation,development,and geometry being significantly different from those of ordinary concrete,thus leading to different freeze-thaw cycle mechanisms.In addition,due to its different pore structure compared to ordinary concrete,three types of clogging mechanisms,affecting the long-term permeability of pervious concrete were elaborated systematically(i.e.,physical clogging,biological clogging,and chemical clogging).And the ways to improve the anti-clogging of pervious concrete are systematically presented from multiple perspectives.Finally,in order to broaden the engineering applications of pervious concrete,some research proposals are presented in this study.
基金funded by the National Key Basic Research Development Plan of China (Grant No. 2012CB026104)the National Natural Science Foundation (NSFC) of China (Grant Nos.51208320 and 51171281)
文摘Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the normal operation of railway lines. This study is to obtain the influencing rules of freeze-thaw on the dynamic properties (dynamic strain, confining pressure and compactness) of silty sand. Based on an amount of inner tests, the dynamic modulus and damping ratio properties of silty soil subjected to repeated freeze-thaw cycles were deeply researched and analyzed. The results are as follows: At the same dynamic strain, the relationship of dynamic stress and freeze-thaw cycles presents negative cor- relation, and the relationship of dynamic stress, confining pressure and compactness present positive correlation. The dynamic modulus double decreases while the damping ratio double increases with incremental increase in dynamic strain. The dynamic modulus sharply decreases while the damping ratio increases with incremental increase in freeze-thaw cycles, and then the changes level off after six freeze-thaw cycles. The dynamic modulus increases while the damping ratio decreases as the confining pressure and compactness increase at the same strain level.
基金supported by the China Railway Construction Group Scientific Research and Development Project(ZTJ2021WBXKYKT)Natural Science Foundation of Shaanxi Province(Grant No.2022JM143)+1 种基金the Fundamental Research Funds for the Central Universities,CHD(Grant No.300102262104)the National Science Foundation of China(Grant Nos.41502292,51574037)。
文摘High temperature rutting is a typical highway damage in Xinjiang, China, and its trigger process usually has a close relationship with characteristics of road temperature distribution. A numerical model of earth-atmosphere coupling heat transfer on a typical section of the Beijing-Xinjiang Expressway(G7) from Wutong Daquan to Yiwu was established in this work. Spatiotemporal characteristics of pavement structure layer temperature distribution, frequency and duration times of road surface high temperature from May 1 to September 30 are statistically studied. The effects of wind speed, weather and air temperature on asphalt layer and pavement temperature are analyzed. The results show that:(1) Spatial and temporal temperature distribution characteristics of pavement structural layers are greatly affected by the coupled earth-atmosphere heat transfer process. Surface temperature increases along the airflow direction and daily temperature variation of the pavement structure layer decreases with an increase of depth.(2) G7 expressway will face the challenge of high rutting damage. The proportion of temperature higher than 50 ℃ for pavement surface and asphalt upper layer both exceeds 50%and high temperature of road lasts for more than six hours in numerous days.(3) High temperatures of asphalt pavement are usually associated with low ambient wind speeds, while the wind flow has little cooling effect when the road surface temperature is relative high. Weather conditions have a significant impact on temperature of the road surface. The probability of high temperature in sunny days is obviously higher than other weather conditions.(4) Pavement temperature rises as air temperature rises. When air temperature is higher than 30 °C, the proportion of pavement daily maximum temperature over softening point reaches up to 78%.
基金the National Natural Science Foundation of China(No.52078009)the joint research project of the Wind Engineering Research Center,Tokyo Polytechnic University.(MEXT(Japan)Promotion of Distinctive Joint Research Center Program Grant Number:JPMXP0619217840,JURC Grant Number:20202007).
文摘Indoor thermal comfort is essential as it improves living standards.Activity scenarios of personnel are in the process of a dynamic change.In most interior spaces with fixed working stations,people directly blown by cold air have a poor thermal experience.Therefore,to meet the differentiated environmental demands,one challenge is to explore novel ventilation strategies to satisfy the changing environmental needs.An adaptive strategy,multi-vent module-based adaptive ventilation(MAV),was designed to increase the adjustability of air distribution and better adapt to variable demands.A classroom was chosen as a representative model with multiple scenarios during its use.Simulations were conducted to verify the three-level control effect of MAV on improving the thermal environment.The results revealed that different vent solutions create different airflow patterns and thermal environments,which can be matched to the scenarios.The scale for ventilation efficiency No.4,which measured the influence scope of supply air,was used to evaluate the zoning division control in MAV.The space under the charge of a concerned MAV module showed a higher SVE4 than that at other zones.This implied that the zoning division can be effectively implemented.Thermal comfort measured using the air diffusion performance index,predicted mean vote,and draught rate showed that the application of MAV is better than that of the fixed MV mode,and the discomfort experienced when exposed to cold air can be avoided.It is believed that these results will help extend the research of adaptive ventilation strategies.