China’s architecture,engineering,and construction(AEC)industry needs a clear and sustainable development roadmap.Drawing inspiration from speeches delivered at a seminar hosted by the Chinese Academy of Engineering a...China’s architecture,engineering,and construction(AEC)industry needs a clear and sustainable development roadmap.Drawing inspiration from speeches delivered at a seminar hosted by the Chinese Academy of Engineering and extensive literature research on Chinese policies,this article presents a summary of the current trends in the AEC industry in four dimensions:industrialization as the foundation,intelligence as the enabler,lean management as the strategy,and green development as the goal.These four dimensions are intricately interconnected and rooted in multiple disciplines.The article provides a detailed review of the current practices,challenges,and future directions associated with each dimension.Additionally,ten grand challenges were proposed to stimulate discussions on the future of the AEC industry.This article offers an overarching understanding of the AEC industry and presents a four-dimension framework for sustainable development,which can be valuable for AEC practitioners.展开更多
In permafrost regions with warm frozen soil,subgrade thaw-collapse phenomenon commonly occurs,facing thaw collapse problems of the existed frozen soil subgrade,thus it is difficult to use traditional methods such as a...In permafrost regions with warm frozen soil,subgrade thaw-collapse phenomenon commonly occurs,facing thaw collapse problems of the existed frozen soil subgrade,thus it is difficult to use traditional methods such as active cooling and passive protection technology to stabilize the existed warm frozen soil subgrade.This study derives a novel stabilizer method,a long-short(L-S)cement-mixed batter pile composite foundation to stabilize the existed warm frozen soil subgrade.To solve the thawcollapse problems in warm frozen soil subgrade,high water content and large compressibility characteristics were compared between soft soil and warm frozen soils.Theoretical analysis of heat conduction and numerical simulation of finite element model were used to study the freeze–thaw process and evaluate the stabilized effects of the L-S cement-mixed batter piles on the warm frozen soil foundation of the Qinghai-Tibet Highway.Furthermore,the thaw process and mechanical properties of foundation and piles were analyzed by introducing the hydration heat factor in the thermodynamic control equation.The results indicate that the thawing displacement of the existed warm frozen soil subgrade was reduced owing to the“support”and“grasp”effects of the L-S cement-mixed batter piles on the surrounding soil.The composite ground formed by strengthening the warm frozen ground with batter piles could considerably improve the bearing capacity of the existed warm frozen ground,effectively restrain the deformation of the upper embankment,and improve the strength of the ground.The analysis can provide method for the construction design of cement mixing batter pile foundation in cold regions.展开更多
Corona discharge, as a common means to obtain non-equilibrium plasma, can generally obtain high-concentration plasma by increasing discharge points to meet production needs. However,the existing numerical simulation m...Corona discharge, as a common means to obtain non-equilibrium plasma, can generally obtain high-concentration plasma by increasing discharge points to meet production needs. However,the existing numerical simulation models used to study multi-point corona discharge are all calculations of small-scale space models, which cannot obtain the distribution characteristics of plasma in large space. Based on our previous research, this paper proposes a hybrid model for studying the distribution of multi-point discharge plasma in large-scale spaces, which divides the computational domain and computes separately with the hydrodynamic model and the ion mobility model. The simulation results are verified by a needle–ball electrode device. Firstly, the electric field distribution and plasma distribution of the needle electrodes with single tip and double tips are compared and discussed. Secondly, the plasma distribution of the needle electrode with the double tip at different voltages is investigated. Both computational and experimental results indicate that the charged particle concentration and current of the needle electrode with double tips are both twice as high as those of the needle electrode with a single tip. This model can extend the computational area of the multi-point corona discharge finite element model to the sub-meter(25 cm) or meter level, which provides an effective means to study the plasma distribution generated by multiple discharge points in large-scale space.展开更多
The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In ord...The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In order to describe the energy dissipation by the motion of the structure under dynamic loading,a damping model which only includes stiffness damp stress was proposed and incorporated into the proposed rate dependent model to consider the energy dissipation at the material scale.The proposed model was developed in ABAQUS via UMAT and was verified by the simulations of concrete specimens under both tension and compression uniaxial loading at different strain rates.The nonlinear analysis of Koyna concrete dam under earthquake motions indicates that adding stiffness damp into the constitutive model can significantly enhance the calculation efficiency of the dynamic implicit analysis for greatly improving the numerical stability of the model.Considering strain rate effect in the model can affect the displacement reflection of this structure for slightly enhancing the displacement of the top,and can improve the calculation efficiency for greatly reducing the cost time.展开更多
This article utilizes the theory of mixtures to formulate a general theory of wave propagation with mass-coupling effect in fluid-saturated porous media. An attempt is made to discuss the physical interpretation and t...This article utilizes the theory of mixtures to formulate a general theory of wave propagation with mass-coupling effect in fluid-saturated porous media. An attempt is made to discuss the physical interpretation and the thermodynamic restriction of the coefficients appearing in the equations obtained, by the comparison it is shown that Biot's classical theory and the present one are essentially consistent. Also wave velocities in some special cases are calculated, from which it is concluded that mass-coupling and permeability of media greatly affect wave propagation behavior.展开更多
The optical properties of coatings pigmented with different black colorants were systematically investigated and their surface temperatures and cooling energy savings were estimated. The black coatings pigmented with ...The optical properties of coatings pigmented with different black colorants were systematically investigated and their surface temperatures and cooling energy savings were estimated. The black coatings pigmented with chromite iron nickel black and manganese ferrite black spinel colorants are not cool enough to be energy efficient cool black coatings. The cool black coatings pigmented with NIR-transmitting perylene black and dioxazine purple colorants possess a green shade and a violet shade, respectively. The estimated surface temperature reduction values and annual cooling energy savings in Beijing range from 3.0°C and 1.21 kWhm-2yr-1 for the black coating pigmented with chromite iron nickel colorant to 13.8°C and 5.52 kWhm-2yr-1 for the black coating pigmented with dioxazine purple colorant, respectively.展开更多
A multi-purpose prototype test system is developed to study the mechanical behavior of tunnel sup-porting structure,including a modular counterforce device,a powerful loading equipment,an advanced intelligent manageme...A multi-purpose prototype test system is developed to study the mechanical behavior of tunnel sup-porting structure,including a modular counterforce device,a powerful loading equipment,an advanced intelligent management system and an efficient noncontact deformation measurement system.The functions of the prototype test system are adjustable size and shape of the modular counterforce structure,sufficient load reserve and accurate loading,multi-connection linkage intelligent management,and high-precision and continuously positioned noncontact deformation measurement.The modular counterforce structure is currently the largest in the world,with an outer diameter of 20.5 m,an inner diameter of 16.5 m and a height of 6 m.The case application proves that the prototype test system can reproduce the mechanical behavior of the tunnel lining during load-bearing,deformation and failure processes in detail.展开更多
The frequency-locked phenomenon commonly occurs in the vortex-induced vibration(VIV)of bluff bodies.Numerical simulation of this lock-in behavior is challenging,especially when the structure is positioned in close pro...The frequency-locked phenomenon commonly occurs in the vortex-induced vibration(VIV)of bluff bodies.Numerical simulation of this lock-in behavior is challenging,especially when the structure is positioned in close proximity to a solid boundary.To establish a robust simulator,an enhanced smoothed particle hydrodynamic(SPH)model is developed.The SPH model incorporates a particle shifting algorithm and a pressure correction algorithm to prevent cavity formation in the structure's wake area.A damping zone is also established near the outlet boundary to dissipate the vortices that shed from the structure.Additionally,GPU parallel technology is implemented to enhance the SPH model's computational efficiency.To validate the mo del,the predicted results are compared with the available refere nce data for flow past both stationary and oscillating cylinders.The verified SPH model is then employed to comparatively investigate the motion re sponse,lift characteristic,and vortex shedding mode of cylinders with and without accounting for the effect of boundary layers.Numerical analyses demonstrate that the developed SPH model is a proficient tool for efficiently simulating the vibration of near-wall bluff bodies at low Reynolds number.展开更多
Warm and ice-rich frozen soil(WIRFS) exhibits lower shear strength due to the weak binding forces between soil particles and ice crystals. To enhance the strength of WIRFS, frozen soil was treated separately with Port...Warm and ice-rich frozen soil(WIRFS) exhibits lower shear strength due to the weak binding forces between soil particles and ice crystals. To enhance the strength of WIRFS, frozen soil was treated separately with Portland, Phosphate, Sulphoaluminate, Portland-Phosphate and PortlandSulphoaluminate cements. After the samples were cured under -1.0°C for 7 days, the microscopic pore distribution characteristics and the macro-mechanical properties of WIRFS were investigated using mercury intrusion porosimetry(MIP), scanning electron microscopy(SEM) and unconfined compressive strength(UCS) tests. To quantitatively analyze the laws of pore-size transformation and the variation of Hausdorff volumetric fractal dimensions for pre-and post-treated WIRFS, the CURVEEXTRACT and Image-Pro Plus(IPP) image analysis system has been developed for analysing SEM images of the soil samples. Statistics of the pore-area dimension and pore-volume dimension were calculated. The results reveal that the cement-based treatment of WIRFS can improve the cementation fill of soil pores and the bond forces between soil particles. There is an evident correlation between the microstructure characteristics and the mechanical properties of the treated WIRFS. As the fractal dimensions of pore-area decrease, the unconfined compressive strength of cement-treated WIRFS increases significantly. In contrast, as the fractal dimensions of pore-volume increases, the unconfined compressive strength decreases remarkably.展开更多
This paper presents the design, analysis and experimental study of a loading system for heavy-duty nodes test based on a large-scale multi-directional in-plane loading device, which has been used in a full-scale heavy...This paper presents the design, analysis and experimental study of a loading system for heavy-duty nodes test based on a large-scale multi-directional in-plane loading device, which has been used in a full-scale heavy-duty support node test. Test loads of the support reached 6 567 kN with multi-directional loading requirements, which outrange the capacity of the available loading devices. Through the reinforcement of a large-scale multi-directional inplane loading device, the innovative design of a self-balanced load transferring device, and other arrangement considerations of the loading system, the test was implemented and the loading capacity of the ring was considerably enlarged. Due to the heavy loading requirements, some checking computations of the ring and the load transferring device outranged the limit of the Chinese national code "Code for Design of Steel Structures (GB 50017—2003)", thus elastic-plastic finite element (FE) analysis was carried out on the two devices, and also the real-time monitoring on the whole loading systems during experiments to ensure test safety. FE analysis and test results show that the loading system worked elastically during experiments.展开更多
Anti-ram bollard systems, which are installed around buildings and infrastructure, can prevent unauthorized vehicles from entering, maintain distance from vehicle-borne improvised explosive devices (VBIED) and reduc...Anti-ram bollard systems, which are installed around buildings and infrastructure, can prevent unauthorized vehicles from entering, maintain distance from vehicle-borne improvised explosive devices (VBIED) and reduce the corresponding damage. Compared with a fixed bollard system, a removable bollard system provides more flexibility as it can be removed when needed. This paper first proposes a new type of K4-rated removable anti-ram bollard system. To simulate the collision of a vehicle hitting the bollard system, a finite element model was then built and verified through comparison of numerical simulation results and existing experimental results. Based on the orthogonal design method, the factors influencing the safety and economy of this proposed system were examined and sorted according to their importance. An optimal design scheme was then produced. Finally, to validate the effectiveness of the proposed design scheme, four dynamic impact tests, including two front impact tests and two side impact tests, have been conducted according to BSI Specifications. The residual rotation angles of the specimen are smaller than 30~ and satisfy the requirements of the BSI Specification.展开更多
High-performing wearability and corrosion resistance are required for an exposed aluminum alloy bridge deck,but existing experimental research remains limited.In this paper,feasible test methods are proposed based on ...High-performing wearability and corrosion resistance are required for an exposed aluminum alloy bridge deck,but existing experimental research remains limited.In this paper,feasible test methods are proposed based on an experimental study on the wearability and corrosion resistance of the aluminum alloy bridge deck of the Bengbu Bridge in Tianjin,China.The line friction test of standard specimens was adopted,and the aluminum alloy bridge deck's wearability was calculated.The electrochemical test was conducted to measure the corrosion rate and morphology characteristics of specimens that were corroded in various solutions that simulated the atmospheric environment.The test results show that the wearability and corrosion resistance of the aluminum alloy bridge deck are sufficient and met the project's requirements.The test methods proposed have practical significance for future engineering research,and the test results are useful for other engineering applications of aluminum alloys.展开更多
The grillage adaptive beam string structure(GABSS)is a new type of smart structure that can self-adjust its deformation and internal forces through a group of active struts(actuators)in response to changes in environm...The grillage adaptive beam string structure(GABSS)is a new type of smart structure that can self-adjust its deformation and internal forces through a group of active struts(actuators)in response to changes in environmental conditions.In this paper,an internal force control method based on a gradient–genetic algorithm(GGA)is proposed for the static control of a tensioned structure(especially the GABSS).Specifically,an optimization model of the GABSS is established in which the adjustment values of the actuators are set as the control variables,and the internal force of the beam is set as the objective function.The improved algorithm has the advantage of the global optimization ability of the genetic algorithm and the local search ability of the gradient algorithm.Two examples are provided to illustrate the application of the GGA method.The results show that the proposed method is practical for solving the internal force control problem of the GABSS.展开更多
The determination of carbon emission from foundation pit engineering is a tough and complex project owing to its characteristics including large material consumption,short use time,difficult recycling and no operation...The determination of carbon emission from foundation pit engineering is a tough and complex project owing to its characteristics including large material consumption,short use time,difficult recycling and no operation stage.To overcome these limitations,the calculation boundary and calculation method for carbon emission of foundation pit project are defined in this paper,which is successfully applied in the carbon emission analysis of the actual engineering project,i.e.the construction of large-scale foundation pit of Kunming comprehensive transportation international hub.All the carbon emissions coresponding to four working stages including building materials production,building materials transportation,construction and demolition were calculated and anatomized.The results revealed that the content of CO_(2) released in the stage of building materials production accounts for 89.3%of the total carbon emission,which means the amount of building materials consumed in the engineering project is the crucial factor to control the carbon emission.Besides,two kinds of carbon reduction measures,i.e.optimization design of support scheme and recycling waste materials of internal support demolition,were explored by analyzing the proportion and average value of carbon emission from different sub project of the support structure.A pronounced effect of carbon reduction was achieved.Furthermore,both a fast calculation method of carbon emission factor of unit work volume and general carbon reduction measures are proposed in this paper,which could provide a reference and new viewpoint for the engineers and designers to calculate and analyze the carbon emission and to take effective carbon reduction measures.展开更多
Multifunctional devices integrated with electrochromism and energy storage or energy production functions are attractive because these devices can be used as an effective approach to address the energy crisis and envi...Multifunctional devices integrated with electrochromism and energy storage or energy production functions are attractive because these devices can be used as an effective approach to address the energy crisis and environmental pollution in society today. In this review, we explain the operation principles of electrochromic energy storage devices including electrochromic supercapacitors,electrochromic batteries, and the photoelectrochromic devices. Furthermore, the material candidates and structure types of these multifunctional devices are discussed in detail. The major challenges of these devices along with a further outlook are highlighted at the end.展开更多
基金This study was supported by the National Key Research and Development Program of China(No.2022YFC3801700)National Natural Science Foundation of China(Grant Nos.52108090 and 52078374)+2 种基金Chinese Academy of Engineering(No.2022-XZ-21)Science Foundation for the Science and Technology Commission of Shanghai Municipality,China-Carbon Peaking and Carbon Neutrality Program(No.22dz1207100 and 22dz1207800)Top Discipline Plan of Shanghai Universities-Class I.
文摘China’s architecture,engineering,and construction(AEC)industry needs a clear and sustainable development roadmap.Drawing inspiration from speeches delivered at a seminar hosted by the Chinese Academy of Engineering and extensive literature research on Chinese policies,this article presents a summary of the current trends in the AEC industry in four dimensions:industrialization as the foundation,intelligence as the enabler,lean management as the strategy,and green development as the goal.These four dimensions are intricately interconnected and rooted in multiple disciplines.The article provides a detailed review of the current practices,challenges,and future directions associated with each dimension.Additionally,ten grand challenges were proposed to stimulate discussions on the future of the AEC industry.This article offers an overarching understanding of the AEC industry and presents a four-dimension framework for sustainable development,which can be valuable for AEC practitioners.
基金supported by the National Natural Science Foundation of China(Grant No.41971086)Natural Science Foundation of Shanxi Province(Grant No.2023-JC-QN-0626,2022JQ-467).
文摘In permafrost regions with warm frozen soil,subgrade thaw-collapse phenomenon commonly occurs,facing thaw collapse problems of the existed frozen soil subgrade,thus it is difficult to use traditional methods such as active cooling and passive protection technology to stabilize the existed warm frozen soil subgrade.This study derives a novel stabilizer method,a long-short(L-S)cement-mixed batter pile composite foundation to stabilize the existed warm frozen soil subgrade.To solve the thawcollapse problems in warm frozen soil subgrade,high water content and large compressibility characteristics were compared between soft soil and warm frozen soils.Theoretical analysis of heat conduction and numerical simulation of finite element model were used to study the freeze–thaw process and evaluate the stabilized effects of the L-S cement-mixed batter piles on the warm frozen soil foundation of the Qinghai-Tibet Highway.Furthermore,the thaw process and mechanical properties of foundation and piles were analyzed by introducing the hydration heat factor in the thermodynamic control equation.The results indicate that the thawing displacement of the existed warm frozen soil subgrade was reduced owing to the“support”and“grasp”effects of the L-S cement-mixed batter piles on the surrounding soil.The composite ground formed by strengthening the warm frozen ground with batter piles could considerably improve the bearing capacity of the existed warm frozen ground,effectively restrain the deformation of the upper embankment,and improve the strength of the ground.The analysis can provide method for the construction design of cement mixing batter pile foundation in cold regions.
基金supported by National Natural Science Foundation of China (Nos.52207158 and 51821005)the Fundamental Research Funds for the Central Universities (HUST: No.2022JYCXJJ012)the National Key Research and Development Program of China (Nos.2016YFC0401002 and 2016YFC0401006)。
文摘Corona discharge, as a common means to obtain non-equilibrium plasma, can generally obtain high-concentration plasma by increasing discharge points to meet production needs. However,the existing numerical simulation models used to study multi-point corona discharge are all calculations of small-scale space models, which cannot obtain the distribution characteristics of plasma in large space. Based on our previous research, this paper proposes a hybrid model for studying the distribution of multi-point discharge plasma in large-scale spaces, which divides the computational domain and computes separately with the hydrodynamic model and the ion mobility model. The simulation results are verified by a needle–ball electrode device. Firstly, the electric field distribution and plasma distribution of the needle electrodes with single tip and double tips are compared and discussed. Secondly, the plasma distribution of the needle electrode with the double tip at different voltages is investigated. Both computational and experimental results indicate that the charged particle concentration and current of the needle electrode with double tips are both twice as high as those of the needle electrode with a single tip. This model can extend the computational area of the multi-point corona discharge finite element model to the sub-meter(25 cm) or meter level, which provides an effective means to study the plasma distribution generated by multiple discharge points in large-scale space.
基金Project(2006BAJ03A03)supported by the National Key Technology R&D Program during the 11th Five-Year Plan Period of China
文摘The elasto-plastic damage model for concrete under static loading,previously proposed,was extended to account for the concrete strain-rate through viscous regularization of the evolution of the damage variables.In order to describe the energy dissipation by the motion of the structure under dynamic loading,a damping model which only includes stiffness damp stress was proposed and incorporated into the proposed rate dependent model to consider the energy dissipation at the material scale.The proposed model was developed in ABAQUS via UMAT and was verified by the simulations of concrete specimens under both tension and compression uniaxial loading at different strain rates.The nonlinear analysis of Koyna concrete dam under earthquake motions indicates that adding stiffness damp into the constitutive model can significantly enhance the calculation efficiency of the dynamic implicit analysis for greatly improving the numerical stability of the model.Considering strain rate effect in the model can affect the displacement reflection of this structure for slightly enhancing the displacement of the top,and can improve the calculation efficiency for greatly reducing the cost time.
文摘This article utilizes the theory of mixtures to formulate a general theory of wave propagation with mass-coupling effect in fluid-saturated porous media. An attempt is made to discuss the physical interpretation and the thermodynamic restriction of the coefficients appearing in the equations obtained, by the comparison it is shown that Biot's classical theory and the present one are essentially consistent. Also wave velocities in some special cases are calculated, from which it is concluded that mass-coupling and permeability of media greatly affect wave propagation behavior.
文摘The optical properties of coatings pigmented with different black colorants were systematically investigated and their surface temperatures and cooling energy savings were estimated. The black coatings pigmented with chromite iron nickel black and manganese ferrite black spinel colorants are not cool enough to be energy efficient cool black coatings. The cool black coatings pigmented with NIR-transmitting perylene black and dioxazine purple colorants possess a green shade and a violet shade, respectively. The estimated surface temperature reduction values and annual cooling energy savings in Beijing range from 3.0°C and 1.21 kWhm-2yr-1 for the black coating pigmented with chromite iron nickel colorant to 13.8°C and 5.52 kWhm-2yr-1 for the black coating pigmented with dioxazine purple colorant, respectively.
文摘A multi-purpose prototype test system is developed to study the mechanical behavior of tunnel sup-porting structure,including a modular counterforce device,a powerful loading equipment,an advanced intelligent management system and an efficient noncontact deformation measurement system.The functions of the prototype test system are adjustable size and shape of the modular counterforce structure,sufficient load reserve and accurate loading,multi-connection linkage intelligent management,and high-precision and continuously positioned noncontact deformation measurement.The modular counterforce structure is currently the largest in the world,with an outer diameter of 20.5 m,an inner diameter of 16.5 m and a height of 6 m.The case application proves that the prototype test system can reproduce the mechanical behavior of the tunnel lining during load-bearing,deformation and failure processes in detail.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.52101312 and 51979028)the Basic and Applied Basic Research Foundation of Guangdong Province (Grant Nos.2022A1515240014 and 2023A1515011000)+1 种基金the Basic and Applied Basic Research Project of Guangzhou (Grant No.202201010240)the Project supported by SKL of HESS (Grant No.HESS-2012)。
文摘The frequency-locked phenomenon commonly occurs in the vortex-induced vibration(VIV)of bluff bodies.Numerical simulation of this lock-in behavior is challenging,especially when the structure is positioned in close proximity to a solid boundary.To establish a robust simulator,an enhanced smoothed particle hydrodynamic(SPH)model is developed.The SPH model incorporates a particle shifting algorithm and a pressure correction algorithm to prevent cavity formation in the structure's wake area.A damping zone is also established near the outlet boundary to dissipate the vortices that shed from the structure.Additionally,GPU parallel technology is implemented to enhance the SPH model's computational efficiency.To validate the mo del,the predicted results are compared with the available refere nce data for flow past both stationary and oscillating cylinders.The verified SPH model is then employed to comparatively investigate the motion re sponse,lift characteristic,and vortex shedding mode of cylinders with and without accounting for the effect of boundary layers.Numerical analyses demonstrate that the developed SPH model is a proficient tool for efficiently simulating the vibration of near-wall bluff bodies at low Reynolds number.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41471062 and 41401087)the State Key Laboratory of Frozen Soil Engineering (Grant No.SKLFSE-ZT-35)
文摘Warm and ice-rich frozen soil(WIRFS) exhibits lower shear strength due to the weak binding forces between soil particles and ice crystals. To enhance the strength of WIRFS, frozen soil was treated separately with Portland, Phosphate, Sulphoaluminate, Portland-Phosphate and PortlandSulphoaluminate cements. After the samples were cured under -1.0°C for 7 days, the microscopic pore distribution characteristics and the macro-mechanical properties of WIRFS were investigated using mercury intrusion porosimetry(MIP), scanning electron microscopy(SEM) and unconfined compressive strength(UCS) tests. To quantitatively analyze the laws of pore-size transformation and the variation of Hausdorff volumetric fractal dimensions for pre-and post-treated WIRFS, the CURVEEXTRACT and Image-Pro Plus(IPP) image analysis system has been developed for analysing SEM images of the soil samples. Statistics of the pore-area dimension and pore-volume dimension were calculated. The results reveal that the cement-based treatment of WIRFS can improve the cementation fill of soil pores and the bond forces between soil particles. There is an evident correlation between the microstructure characteristics and the mechanical properties of the treated WIRFS. As the fractal dimensions of pore-area decrease, the unconfined compressive strength of cement-treated WIRFS increases significantly. In contrast, as the fractal dimensions of pore-volume increases, the unconfined compressive strength decreases remarkably.
基金Supported by National Natural Science Foundation of China (No. 50878066)the National Key Technology R&D Program in the 11th Five-Year Plan of China (No. 2006BAJ01B02)the Key Technologies R&D Program of Heilongjiang Province, China (No. GB02C204)
文摘This paper presents the design, analysis and experimental study of a loading system for heavy-duty nodes test based on a large-scale multi-directional in-plane loading device, which has been used in a full-scale heavy-duty support node test. Test loads of the support reached 6 567 kN with multi-directional loading requirements, which outrange the capacity of the available loading devices. Through the reinforcement of a large-scale multi-directional inplane loading device, the innovative design of a self-balanced load transferring device, and other arrangement considerations of the loading system, the test was implemented and the loading capacity of the ring was considerably enlarged. Due to the heavy loading requirements, some checking computations of the ring and the load transferring device outranged the limit of the Chinese national code "Code for Design of Steel Structures (GB 50017—2003)", thus elastic-plastic finite element (FE) analysis was carried out on the two devices, and also the real-time monitoring on the whole loading systems during experiments to ensure test safety. FE analysis and test results show that the loading system worked elastically during experiments.
文摘Anti-ram bollard systems, which are installed around buildings and infrastructure, can prevent unauthorized vehicles from entering, maintain distance from vehicle-borne improvised explosive devices (VBIED) and reduce the corresponding damage. Compared with a fixed bollard system, a removable bollard system provides more flexibility as it can be removed when needed. This paper first proposes a new type of K4-rated removable anti-ram bollard system. To simulate the collision of a vehicle hitting the bollard system, a finite element model was then built and verified through comparison of numerical simulation results and existing experimental results. Based on the orthogonal design method, the factors influencing the safety and economy of this proposed system were examined and sorted according to their importance. An optimal design scheme was then produced. Finally, to validate the effectiveness of the proposed design scheme, four dynamic impact tests, including two front impact tests and two side impact tests, have been conducted according to BSI Specifications. The residual rotation angles of the specimen are smaller than 30~ and satisfy the requirements of the BSI Specification.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No 20090002110046)
文摘High-performing wearability and corrosion resistance are required for an exposed aluminum alloy bridge deck,but existing experimental research remains limited.In this paper,feasible test methods are proposed based on an experimental study on the wearability and corrosion resistance of the aluminum alloy bridge deck of the Bengbu Bridge in Tianjin,China.The line friction test of standard specimens was adopted,and the aluminum alloy bridge deck's wearability was calculated.The electrochemical test was conducted to measure the corrosion rate and morphology characteristics of specimens that were corroded in various solutions that simulated the atmospheric environment.The test results show that the wearability and corrosion resistance of the aluminum alloy bridge deck are sufficient and met the project's requirements.The test methods proposed have practical significance for future engineering research,and the test results are useful for other engineering applications of aluminum alloys.
基金supported by the National Key R&D Program of China(No.2017YFC0806100)the National Natural Science Foundation of China(No.51578491)。
文摘The grillage adaptive beam string structure(GABSS)is a new type of smart structure that can self-adjust its deformation and internal forces through a group of active struts(actuators)in response to changes in environmental conditions.In this paper,an internal force control method based on a gradient–genetic algorithm(GGA)is proposed for the static control of a tensioned structure(especially the GABSS).Specifically,an optimization model of the GABSS is established in which the adjustment values of the actuators are set as the control variables,and the internal force of the beam is set as the objective function.The improved algorithm has the advantage of the global optimization ability of the genetic algorithm and the local search ability of the gradient algorithm.Two examples are provided to illustrate the application of the GGA method.The results show that the proposed method is practical for solving the internal force control problem of the GABSS.
基金supported by Science and Technology Program of the Ministry of Housing and Urban-Rural Development[2022-S-031]CSCEC1B Technical and Development Plan[Grant No.CSCEC1B-2021-33].
文摘The determination of carbon emission from foundation pit engineering is a tough and complex project owing to its characteristics including large material consumption,short use time,difficult recycling and no operation stage.To overcome these limitations,the calculation boundary and calculation method for carbon emission of foundation pit project are defined in this paper,which is successfully applied in the carbon emission analysis of the actual engineering project,i.e.the construction of large-scale foundation pit of Kunming comprehensive transportation international hub.All the carbon emissions coresponding to four working stages including building materials production,building materials transportation,construction and demolition were calculated and anatomized.The results revealed that the content of CO_(2) released in the stage of building materials production accounts for 89.3%of the total carbon emission,which means the amount of building materials consumed in the engineering project is the crucial factor to control the carbon emission.Besides,two kinds of carbon reduction measures,i.e.optimization design of support scheme and recycling waste materials of internal support demolition,were explored by analyzing the proportion and average value of carbon emission from different sub project of the support structure.A pronounced effect of carbon reduction was achieved.Furthermore,both a fast calculation method of carbon emission factor of unit work volume and general carbon reduction measures are proposed in this paper,which could provide a reference and new viewpoint for the engineers and designers to calculate and analyze the carbon emission and to take effective carbon reduction measures.
基金supported by the National Key Basic Research and Development Program of China(No.2016YFC0701504)the National Natural Science Foundation of China(No.51608014)+1 种基金the Natural Science Foundation of Beijing,China(No.8174060)the China Postdoctoral Science Foundation(No.2017T100020)
基金the National Natural Science Foundation of China (51572058, 91216123, 51174063, 51502057)the Natural Science Foundation of Heilongjiang Province (E201436)+1 种基金the International Science & Technology Cooperation Program of China(2013DFR10630, 2015DFE52770)the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20132302110031)
文摘Multifunctional devices integrated with electrochromism and energy storage or energy production functions are attractive because these devices can be used as an effective approach to address the energy crisis and environmental pollution in society today. In this review, we explain the operation principles of electrochromic energy storage devices including electrochromic supercapacitors,electrochromic batteries, and the photoelectrochromic devices. Furthermore, the material candidates and structure types of these multifunctional devices are discussed in detail. The major challenges of these devices along with a further outlook are highlighted at the end.