This study was designed to investigate whether the Notch pathway is involved in the develop-ment of diffuse spinal cord astrocytomas. BALB/c nude mice received injections of CD133+and CD133? cell suspensions prepare...This study was designed to investigate whether the Notch pathway is involved in the develop-ment of diffuse spinal cord astrocytomas. BALB/c nude mice received injections of CD133+and CD133? cell suspensions prepared using human recurrent diffuse spinal cord astrocytoma tissue through administration into the right parietal lobe. After 7–11 weeks, magnetic resonance imaging was performed weekly. Xenografts were observed on the surfaces of the brains of mice receiving the CD133+ cell suspension, and Notch-immunopositive expression was observed in the xenografts. By contrast, no xenografts appeared in the identical position on the surfaces of the brains of mice receiving the CD133? cell suspension, and Notch-immunopositive expres-sion was hardly detected either. Hematoxylin-eosin staining and immunohistochemical staining revealed xenografts on the convex surfaces of the brains of mice that underwent CD133+ astro-cytoma transplantation. Some sporadic astroglioma cells showed pseudopodium-like structures, which extended into the cerebral white matter. However,it should be emphasized that the sub-cortex xenograft with Notch-immunopositive expression was found in the fourth mouse received injection of CD133? astrocytoma cells. However, these ifndings suggest that the Notch pathway plays an important role in the formation of astrocytomas, and can be considered a novel treat-ment target for diffuse spinal cord astrocytoma.展开更多
基金supported by grants from Science Foundation of Ministry of Education of China for the Excellent Youth Scholars,No.200800011035the National Natural Science Foundation of China,No.81200969/H0912
文摘This study was designed to investigate whether the Notch pathway is involved in the develop-ment of diffuse spinal cord astrocytomas. BALB/c nude mice received injections of CD133+and CD133? cell suspensions prepared using human recurrent diffuse spinal cord astrocytoma tissue through administration into the right parietal lobe. After 7–11 weeks, magnetic resonance imaging was performed weekly. Xenografts were observed on the surfaces of the brains of mice receiving the CD133+ cell suspension, and Notch-immunopositive expression was observed in the xenografts. By contrast, no xenografts appeared in the identical position on the surfaces of the brains of mice receiving the CD133? cell suspension, and Notch-immunopositive expres-sion was hardly detected either. Hematoxylin-eosin staining and immunohistochemical staining revealed xenografts on the convex surfaces of the brains of mice that underwent CD133+ astro-cytoma transplantation. Some sporadic astroglioma cells showed pseudopodium-like structures, which extended into the cerebral white matter. However,it should be emphasized that the sub-cortex xenograft with Notch-immunopositive expression was found in the fourth mouse received injection of CD133? astrocytoma cells. However, these ifndings suggest that the Notch pathway plays an important role in the formation of astrocytomas, and can be considered a novel treat-ment target for diffuse spinal cord astrocytoma.