期刊文献+
共找到80篇文章
< 1 2 4 >
每页显示 20 50 100
Long-Term Performance and Microstructural Characterization of Dam Concrete in the Three Gorges Project
1
作者 Chen Lyu Cheng Yu +3 位作者 Chao Lu Li Pan Wenwei Li Jiaping Liu 《Engineering》 SCIE EI CAS CSCD 2024年第2期237-262,共26页
This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled ... This study investigates the long-term performance of laboratory dam concrete in different curing environments over ten years and the microstructure of 17-year-old laboratory concrete and actual concrete cores drilled from the Three Gorges Dam.The mechanical properties of the laboratory dam concrete,whether cured in natural or standard environments,continued to improve over time.Furthermore,the laboratory dam concrete exhibited good resistance to diffusion and a refined microstructure after 17 years.However,curing and long-term exposure to the local natural environment reduced the frost resistance.Microstructural analyses of the laboratory concrete samples demonstrated that moderate-heat cement and fine fly ash(FA)particles were almost fully hydrated to form compact micro structures consisting of large quantities of homogeneous calcium(alumino)silicate hydrate(C-(A)-S-H)gels and a few crystals.No obvious interfacial transition zones were observed in the microstructure owing to the longterm pozzolanic reaction.This dense and homogenous microstructure was the crucial reason for the excellent long-term performance of the dam concrete.A high FA volume also played a significant role in the microstructural densification and performance growth of dam concrete at a later age.The concrete drilled from the dam surface exhibited a loose microstructure with higher microporosity,indicating that concrete directly exposed to the actual service environment suffered degradation caused by water and wind attacks.In this study,both macro-performance and microstructural analyses revealed that the application of moderate-heat cement and FA resulted in a dense and homogenous microstructure,which ensured the excellent long-term performance of concrete from the Three Gorges Dam after 17 years.Long-term exposure to an actual service environment may lead to microstructural degradation of the concrete surface.Therefore,the retained long-term dam concrete samples need to be further researched to better understand its microstructural evolution and development of its properties. 展开更多
关键词 Three Gorges Dam Long-term performance Microstructural analysis Moderate-heat cement Fly ash
下载PDF
Key issues in rock mechanics of the Three Gorges Project in China 被引量:2
2
作者 Qixiang Fan Hongbing Zhu Xuchun Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第4期329-342,共14页
The Three Gorges Project is one of the essential key projects for flood controlling and water resources regulation in the Yangtze River. The project includes a river-crossing dam, underground powerhouses, and navigati... The Three Gorges Project is one of the essential key projects for flood controlling and water resources regulation in the Yangtze River. The project includes a river-crossing dam, underground powerhouses, and navigation structures. Because of the huge size and complicated construction technologies, the project faced a series of challenging engineering issues. In terms of rock mechanics, there are many key technical issues, including the sliding resistance and stability of the dam section along the foundations of powerhouses No.l-5, the ,,;lope stability of the double-line five-stage shiplock, excavation of large-scale underground powerhouses, and curtain grouting under the dam. With decades of scientific research and 16 years of practical construction experiences and reservoir operations, these key technical issues in construction of the Three Gorges Project are successfully resolved, which will attribute to the development of hydropower technology. On the basis of the monitoring data during construction and normal operation periods of the Three Gorges Project, this paper presents a systematic analysis of these key rock mechanical issues in terms of behaviors, solutions, dynamic controlling, monitoring arrangement and integrated assessment. 展开更多
关键词 Three Gorges Project rock mechanics dam sliding resistance and stability high shiplock slope undergroundpowerhouses curtain grouting
下载PDF
Impacts of Comorbidity and Mental Shock on Organic Micropollutants in Surface Water During and After the First Wave of COVID-19 Pandemic in Wuhan (2019–2021), China
3
作者 Jian Zhao Jin Kang +10 位作者 Xiaofeng Cao Rui Bian Gang Liu Shengchao Hu Xinghua Wu Chong Li Dianchang Wang Weixiao Qi Cunrui Huang Huijuan Liu Jiuhui Qu 《Engineering》 SCIE EI CAS CSCD 2024年第6期40-48,共9页
The first pandemic wave of coronavirus disease 2019(COVID-19)induced a considerable increase in several antivirals and antibiotics in surface water.The common symptoms of COVID-19 are viral and bacterial infections,wh... The first pandemic wave of coronavirus disease 2019(COVID-19)induced a considerable increase in several antivirals and antibiotics in surface water.The common symptoms of COVID-19 are viral and bacterial infections,while comorbidities(e.g.,hypertension and diabetes)and mental shock(e.g.,insomnia and anxiety)are nonnegligible.Nevertheless,little is known about the long-term impacts of comorbidities and mental shock on organic micropollutants(OMPs)in surface waters.Herein,we monitored 114 OMPs in surface water and wastewater treatment plants(WWTPs)in Wuhan,China,between 2019 and 2021.The pandemic-induced OMP pollution in surface water was confirmed by significant increases in 26 OMP concentrations.Significant increases in four antihypertensives and one diabetic drug suggest that the treatment of comorbidities may induce OMP pollution.Notably,cotinine(a metabolite of nicotine)increased 155 times to 187 ngL1,which might be associated with increased smoking.Additionally,the increases in zolpidem and sulpiride might be the result of worsened insomnia and depression.Hence,it is reasonable to note that mental-health protecting drugs/behavior also contributed to OMP pollution.Among the observed OMPs,telmisartan,lopinavir,and ritonavir were associated with significantly higher ecological risks because of their limited WWTP-removal rate and high ecotoxicity.This study provides new insights into the effects of comorbidities and mental shock on OMPs in surface water during a pandemic and highlights the need to monitor the fate of related pharmaceuticals in the aquatic environment and to improve their removal efficiencies in WWTPs。 展开更多
关键词 Coronavirus disease 2019 COMORBIDITIES Mental shock MICROPOLLUTANT Surface water
下载PDF
Monitoring result analyses of high slope of five-step ship lock in the Three Gorges Project 被引量:4
4
作者 Qixiang Fan Hongbing Zhu Jun Gen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第2期199-206,共8页
The construction of the double-lane five-step ship lock of the Three Gorges Project (TGP) wascommenced in 1994, the excavation of the ship lock was completed by the end of 1999, and the ship lockwas put in operation... The construction of the double-lane five-step ship lock of the Three Gorges Project (TGP) wascommenced in 1994, the excavation of the ship lock was completed by the end of 1999, and the ship lockwas put in operation in June 2003. The side slopes of the ship lock are characterized by great height(170 m), steepness (70 m in height of upright slope), and great length (over 7000 m in total length). Inassociation with the ship lock, the surrounding rocks in slope have a high potential to deform, withwhich the magnitude of deformation is restricted. Monitoring results show that the deformation of thefive-step ship lock high slopes of the TGP primarily occurred in excavation period, and deformationtended to be stable and convergent during operation period, suggesting the allowable ranges of deformation.At present, the slopes and lock chambers are stable, and the ship lock works well under normaloperation condition, enabling the social and economic benefits of the TGP. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Three Gorges Project(TGP) Five-step ship lock SLOPE Monitoring analysis
下载PDF
State of the climate in the Three Gorges Region of the Yangtze River basin in 2020 被引量:3
5
作者 Tong Cui Xianyan Chen +3 位作者 Xukai Zou Qiang Zhang Shuai Li Hongling Zeng 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第2期7-12,共6页
In 2020,the average air temperature in the Three Gorges Region(TGR)of the Yangtze River basin was 17.2℃,which was close to normal,there were exceptionally fewer days than normal with high temperatures,and the high-te... In 2020,the average air temperature in the Three Gorges Region(TGR)of the Yangtze River basin was 17.2℃,which was close to normal,there were exceptionally fewer days than normal with high temperatures,and the high-temperature events mainly occurred in August.Meanwhile,the average precipitation was 1530.8 mm,which was a remarkable 29%more than usual,and the second-highest since 1961.The precipitation was obviously above-normal in summer,and the precipitation in both June and July was the second-highest of the same period in history.The average number of rainstorm days was higher than normal,and the second-highest since 1961.The average wind speed in the TGR was apparently higher than normal;the average relative humidity was slightly higher than normal;and there were no instances of acid rain,with the rain acidity showing a significant weakening trend over the previous 15 years.In the summer of 2020,the TGR experienced heavy rainstorms and flood disasters.Analysis shows that the frequent southward movement of cold air and abundant warm water vapor from the southwest were the direct causes of the abnormally high precipitation in the TGR from June to July.After the spring of 2020,the continuously high sea surface temperature in the Indian Ocean led to a continuously strong western Pacific subtropical high and its average location being situated more to the south than normal,which might have been an important cause for the abnormal climate conditions in the Yangtze River basin from June to July. 展开更多
关键词 Three Gorges Region Yangtze River Climate state Weather and climate events Meteorological disasters
下载PDF
The construction management system and practice of Three Gorges Project 被引量:1
6
作者 Cao Guangjing 《Engineering Sciences》 EI 2011年第3期31-36,共6页
Three Gorges Project (TGP),the largest water resources and hydropower project in the world with huge scale and complex techniques,has great comprehensive benefits mainly in flood control,power generation and navigatio... Three Gorges Project (TGP),the largest water resources and hydropower project in the world with huge scale and complex techniques,has great comprehensive benefits mainly in flood control,power generation and navigation improvement.Through 17-year construction and practice,the project has been successfully completed.Some valuable experience from the successful construction of TGP has been gained for the management system and mechanism of hydropower project construction in China.Its construction management mode produces important influences on the management system of domestic capital construction.With combination of the construction management practice of TGP,the characteristics of management system and mechanism are summarized,and the suggestions on current hydropower development system and construction management mode are put forward. 展开更多
关键词 Three Gorges Project(TGP) construction management water resources and hvdropower project
下载PDF
Preliminary results on a near-real-time rock slope damage monitoring system based on relative velocity changes following the September 5,2022 M_(S) 6.8 Luding,China earthquake 被引量:1
7
作者 Fan Xie Chen Liang +5 位作者 Shigui Dai Bo Shao Huibao Huang Jinhui Ouyang Li Li Eric Larose 《Earthquake Research Advances》 CSCD 2023年第1期31-36,共6页
Relative seismic velocity change(dv/v)is important for monitoring changes in subsurface material properties and evaluating earthquake-induced rock slope damage in a geological disaster-prone region.In this paper,we pr... Relative seismic velocity change(dv/v)is important for monitoring changes in subsurface material properties and evaluating earthquake-induced rock slope damage in a geological disaster-prone region.In this paper,we present a rapid damage assessment on three slow-moving rock slopes by measuring dv/v decrease caused by the 2022 M_(S) 6.8 Luding earthquake in Southwest China.By applying the stretching method to the cross-correlated seismic wavefields between sensors installed on each slope,we obtain earthquake-induced dv/v decreases of~2.1%,~0.5%,and~0.2%on three slopes at distances ranging from~86 to~370 km to the epicenter,respectively.Moreover,based on seismic data recorded by 16 sensors deployed on the rock slope at a distance of~370 km away from the epicenter,a localized dv/v decease region was observed at the crest of the slope by calculating the spatial dv/v images before and after the earthquake.We also derive an empirical in situ stress sensitivity of -7.29×10^(-8)/Pa by relating the dv/v change to the measured peak dynamic stresses.Our results indicate that a rapid dv/v assessment not only can help facilitate on-site emergency response to earthquakeinduced secondary geological disasters but also can provide a better understanding of the subsurface geological risks under diverse seismic loadings. 展开更多
关键词 Relative velocity change Rock slope damage Luding earthquake Space-time evolution
下载PDF
Floodwater utilization of the Three Gorges Project
8
作者 董前进 《Journal of Chongqing University》 CAS 2009年第2期82-88,共7页
Floods are both risks and resources. Floodwater utilization is an important part of flood management. Considering the rising shortage of water resources, serious water pollution, and undersupply of electric power, it... Floods are both risks and resources. Floodwater utilization is an important part of flood management. Considering the rising shortage of water resources, serious water pollution, and undersupply of electric power, it’s imperative to strengthen flood management. In light of the hydrological characteristics of the Three Gorges Project (TGP) on the Yangtze River in P. R. China, we investigated the necessity and feasibility of TGP floodwater utilization, proprosed dynamic control of limited water level during flood season of the reservoir and basin-wide integrated floodwater management as strategies, and identified problems that might occur in practice. 展开更多
关键词 flood control flood managementi floodwater utilization limited water level in flood seasons Three Gorges Project .
下载PDF
Three Gorges Project:a project for ecological improvement and environmental protection in Yangtze River Basin
9
作者 Lu Youmei 《Engineering Sciences》 EI 2011年第3期9-14,30,共7页
Seeking water and earning their livelihoods is the natural selection of human beings.Like other rivers on the earth,the Yangtze River is the birthplace of human civilization and survival.As an ecosystem,the Yangtze Ri... Seeking water and earning their livelihoods is the natural selection of human beings.Like other rivers on the earth,the Yangtze River is the birthplace of human civilization and survival.As an ecosystem,the Yangtze River Basin is evolving under the influences of natural factors and human activities.Because of soil erosion,pollution and human activities,the imbalance of secondary environment is exacerbated and the ecological environment has become more vulnerable,so it is urgent to mitigate and prevent the ecological crisis.The practice has proved that implementation of engineering measures is an effective way to improve the ecological environment.The Three Gorges Project (TGP) has a flood control storage capacity of 22.15 billion m 3,effectively storing the flood water upstream of Yichang,and protects 15 million people and 1.5 million hm 2 farmland.Furthermore,the project can prevent or slow down the sedimentation and shrinkage of the lakes in the middle Yangtze River such as Dongting Lake;with an average annual power generation of about 90 billion kW· h,it can significantly reduce the emissions of harmful gas like CO 2.In general,the construction of TGP is conducive to the ecological and environmental protection in the Yangtze River Basin and China,even the world. 展开更多
关键词 Yangtze River Basin natural ecology ecological environment environmental protection
下载PDF
Scientific and technological progress and innovation of Three Gorges Project
10
作者 Zhang Chaoran Sun Zhiyu 《Engineering Sciences》 EI 2011年第3期37-41,共5页
In the design,construction and operation periods of the Three Gorges Project (TGP),great challenges have been met in different fields such as water resources and hydropower project construction,electromechanical equip... In the design,construction and operation periods of the Three Gorges Project (TGP),great challenges have been met in different fields such as water resources and hydropower project construction,electromechanical equipment manufacture and ecological environment protection.In view of the key techniques and difficulties in the construction period,scientific and technological breakthroughs have been made by the experts and scholars of various fields and a series of innovative achievements are gained,which make the scientific and technological levels in relevant fields improved.Some major innovative achievements in the construction and operation of TGP are enumerated,which are significant for the hydropower project construction and clean energy development in the future in China. 展开更多
关键词 Three Gorges Project scientific and technological innovation ecological environment protection
下载PDF
Three Gorges Project Withstanding 2010 Peak Floods
11
作者 王儒述 《三峡论坛》 2010年第5期13-18,共6页
The Three Gorges Project(TGP) on the Yangtze River(YR) is the largest hydro-power project in the world;it is now attracting the world wide attention.Possessing comprehensive utilization benefits mainly for flood contr... The Three Gorges Project(TGP) on the Yangtze River(YR) is the largest hydro-power project in the world;it is now attracting the world wide attention.Possessing comprehensive utilization benefits mainly for flood control,power generation and navigation improvement,TGP is a vital and important project in harnessing and developing the YR.The Project primarily aims at flood control whose reservoir has a total storage capacity of 39.3 billion m3,22.15 billion m3 of which can be set for flood control.Construction of the project has greatly improved the flood control capacity in the middle and lower sections of the YR.In 2010 TGP has successfully withstood 3 peak floods,especially the one on July 20 with a frequency of once in 20-year,the largest since the construction of TGP.TGP as an eco-environmental project will be beneficial to ecological and environmental protection and low carbon economy and it will accelerate coordination of the economy,society,resources and environment and sustainable development along the valley,as well as the rapid development of Chinese economy. 展开更多
关键词 TGP peak floods capacity flood control
下载PDF
Causal temporal graph attention network for fault diagnosis of chemical processes
12
作者 Jiaojiao Luo Zhehao Jin +3 位作者 Heping Jin Qian Li Xu Ji Yiyang Dai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期20-32,共13页
Fault detection and diagnosis(FDD)plays a significant role in ensuring the safety and stability of chemical processes.With the development of artificial intelligence(AI)and big data technologies,data-driven approaches... Fault detection and diagnosis(FDD)plays a significant role in ensuring the safety and stability of chemical processes.With the development of artificial intelligence(AI)and big data technologies,data-driven approaches with excellent performance are widely used for FDD in chemical processes.However,improved predictive accuracy has often been achieved through increased model complexity,which turns models into black-box methods and causes uncertainty regarding their decisions.In this study,a causal temporal graph attention network(CTGAN)is proposed for fault diagnosis of chemical processes.A chemical causal graph is built by causal inference to represent the propagation path of faults.The attention mechanism and chemical causal graph were combined to help us notice the key variables relating to fault fluctuations.Experiments in the Tennessee Eastman(TE)process and the green ammonia(GA)process showed that CTGAN achieved high performance and good explainability. 展开更多
关键词 Chemical processes Safety Fault diagnosis Causal discovery Attention mechanism Explainability
下载PDF
Conservation genomics provides insights into genetic resilience and adaptation of the endangered Chinese hazelnut, Corylus chinensis
13
作者 Zhen Yang Lisong Liang +3 位作者 Weibo Xiang Lujun Wang Qinghua Ma Zhaoshan Wang 《Plant Diversity》 SCIE CAS CSCD 2024年第3期294-308,共15页
Global climate change has increased concerns regarding biodiversity loss.However,many key conservation issues still required further research,including demographic history,deleterious mutation load,adaptive evolution,... Global climate change has increased concerns regarding biodiversity loss.However,many key conservation issues still required further research,including demographic history,deleterious mutation load,adaptive evolution,and putative introgression.Here we generated the first chromosome-level genome of the endangered Chinese hazelnut,Corylus chinensis,and compared the genomic signatures with its sympatric widespread C.kwechowensis-C yunnanensis complex.We found large genome rearrangements across all Corylus species and identified species-specific expanded gene families that may be involved in adaptation.Population genomics revealed that both C.chinensis and the C.kwechowensis-C.yunnanensis complex had diverged into two genetic lineages,forming a consistent pattern of southwestern-northern differentiation.Population size of the narrow southwestern lineages of both species have decreased continuously since the late Miocene,whereas the widespread northern lineages have remained stable(C.chinensis) or have even recovered from population bottlenecks(C.kwechowensis-C.yunnanensis complex) during the Quaternary.Compared with C.kwechowensis-C. yunnanensis complex,C.chinensis showed significantly lower genomic diversity and higher inbreeding level.However,C.chinensis carried significantly fewer deleterious mutations than C.kwechowensis-C. yunnanensis complex,as more effective purging selection reduced the accumulation of homozygous variants.We also detected signals of positive selection and adaptive introgression in different lineages,which facilitated the accumulation of favorable variants and formation of local adaptation.Hence,both types of selection and exogenous introgression could have mitigated inbreeding and facilitated survival and persistence of C.chinensis.Overall,our study provides critical insights into lineage differentiation,local adaptation,and the potential for future recovery of endangered trees. 展开更多
关键词 Conservation genomics Demographic history INBREEDING Genetic load Runs of homozygosity Local adaptation
下载PDF
Androgen signaling inhibits de novo lipogenesis to alleviate lipid deposition in zebrafish
14
作者 Jing-Yi Jia Guang-Hui Chen +6 位作者 Ting-Ting Shu Qi-Yong Lou Xia Jin Jiang-Yan He Wu-Han Xiao Gang Zhai Zhan Yin 《Zoological Research》 SCIE CSCD 2024年第2期355-366,共12页
Testosterone is closely associated with lipid metabolism and known to affect body fat composition and muscle mass in males.However,the mechanisms by which testosterone acts on lipid metabolism are not yet fully unders... Testosterone is closely associated with lipid metabolism and known to affect body fat composition and muscle mass in males.However,the mechanisms by which testosterone acts on lipid metabolism are not yet fully understood,especially in teleosts.In this study,cyp17a1-/-zebrafish(Danio rerio)exhibited excessive visceral adipose tissue(VAT),lipid content,and up-regulated expression and activity of hepatic de novo lipogenesis(DNL)enzymes.The assay for transposase accessible chromatinwithsequencing(ATAC-seq)results demonstrated that chromatin accessibility of DNL genes was increased in cyp17a1-/-fish compared to cyp17a1+/+male fish,including stearoyl-CoA desaturase(scd)and fatty acid synthase(fasn).Androgen response element(ARE)motifs in the androgen signaling pathway were significantly enriched in cyp17a1+/+male fish but not in cyp17a1-/-fish.Both androgen receptor(ar)-/-and wildtype(WT)zebrafish administered with Ar antagonist flutamide displayed excessive visceral adipose tissue,lipid content,and up-regulated expression and activity of hepatic de novo lipogenesis enzymes.The Ar agonist BMS-564929 reduced the content of VAT and lipid content,and down-regulated acetyl-CoA carboxylase a(acaca),fasn,and scd expression.Mechanistically,the rescue effect of testosterone on cyp17a1-/-fish in terms of phenotypes was abolished when ar was additionally depleted.Collectively,these findings reveal that testosterone inhibits lipid deposition by down-regulating DNL genes via Ar in zebrafish,thus expanding our understanding of the relationship between testosterone and lipid metabolism in teleosts. 展开更多
关键词 Cyp17a1 TESTOSTERONE Androgen receptor De novo lipogenesis Fatty acid synthesis
下载PDF
Main issues in research and practice of environmental protection for water conservancy and hydropower projects in China 被引量:6
15
作者 Ang Chen Miao Wu +3 位作者 Kai-qi Chen Zhi-yu Sun Chen Shen Peng-yuan Wang 《Water Science and Engineering》 EI CAS CSCD 2016年第4期312-323,共12页
In this paper,we generally summarize the main issues in the operational period of water conservancy and hydropower projects in China over the past several decades.First,the adverse impacts of these projects since the ... In this paper,we generally summarize the main issues in the operational period of water conservancy and hydropower projects in China over the past several decades.First,the adverse impacts of these projects since the technical guidelines were proposed in 2006 are analyzed.Then,combined with projects and experience from 2006 to 2014,the four main issues are summarized:(1) There exist many questions in the design and construction of fishways,which are useful for fish migration,and the migration effects are not as expected.(2) Temperature stratification affecting the downstream fish is the major impact of temperature,and alters fish spawning in the reproduction season.(3)Ecological base flow has been one of the primary questions of the last 30 years in China,the greatest related difficulty being quantification of the amount and flow process necessary to satisfy fish life history.(4) Fish habitat protection and restoration are popular topics in recent years with the development of river ecosystem restoration.Fish habitat loss due to the impacts of dam construction and habitat fragmentation has become more and more serious.These four issues are now the main difficulties in water project management,and interact with one another to bear combined effects on river ecosystems.The issues of eco-hydraulic consideration in the design period are the key factors.Finally,future priorities for research and practice of environmental protection for water conservancy and hydropower projects in China are proposed.The main purpose of this paper is to enhance the scientific research,monitoring,and assessment of operating effectiveness. 展开更多
关键词 Temperature STRATIFICATION ECOLOGICAL base flow FISH HABITAT Environmental protection
下载PDF
Optimization design of foundation excavation for Xiluodu super-high arch dam in China 被引量:7
16
作者 Qixiang Fan Shaowu Zhou Ning Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第2期120-135,共16页
With better understanding of the quality and physico-mechanical properties of rocks of dam foundation,and the physico-mechanical properties and structure design of arch dam in association with the foundation excavatio... With better understanding of the quality and physico-mechanical properties of rocks of dam foundation,and the physico-mechanical properties and structure design of arch dam in association with the foundation excavation of Xiluodu arch dam,the excavation optimization design was proposed for the foundation surface on the basis of feasibility study.Common analysis and numerical analysis results demonstrated the feasibility of using the weakly weathered rocks III1and III2as the foundation surface of super-high arch dam.In view of changes in the geological conditions at the dam foundation along the riverbed direction,the design of extending foundation surface excavation area and using consolidating grouting and optimizing structure of dam bottom was introduced,allowing for harmonization of the arch dam and foundation.Three-dimensional(3D)geomechanics model test and fi nite element analysis results indicated that the dam body and foundation have good overload stability and high bearing capacity.The monitoring data showed that the behaviors of dam and foundation correspond with the designed patterns in the construction period and the initial operation period. 展开更多
关键词 Super-high arch dam Foundation surface Optimization design Stability analysis
下载PDF
Spatio-temporal trends and causes of variations in runoff and sediment load of the Jinsha River in China 被引量:3
17
作者 LU Chuan-hao DONG Xian-yong +1 位作者 TANG Jia-liang LIU Gang-cai 《Journal of Mountain Science》 SCIE CSCD 2019年第10期2361-2378,共18页
The Jinsha River Basin is an important basin for hydropower in China and it is also the main runoff and sediment source area for the Yangtze River,which greatly influence the runoff and sediment in the Three Gorges Re... The Jinsha River Basin is an important basin for hydropower in China and it is also the main runoff and sediment source area for the Yangtze River,which greatly influence the runoff and sediment in the Three Gorges Reservoir.This study aims to characterize the spatial distribution,inter-annual variation of runoff and sediment load in the Jinsha River Basin,and to analyze the contribution of rainfall and human activities to the runoff and sediment load changes.The monitoring data on runoff,sediment load and precipitation were collected from 11hydrological stations in the Jinsha River Basin from1966 to 2016.The data observed at the outlet of the basin showed that 71.4%of the runoff is from the upper reaches of the Jinsha River Basin and the Yalong River,while 63.3%of the sediment is from the lower reaches(excluding the Yalong River).There is no significant increase in runoff on temporal scale in the Jinsha River Basin,while it has an abrupt change in runoff in both upstream and midstream in 1985,and an abrupt change in downstream in 1980 and2013.The sediment load demonstrated a significantincreasing trend in the upstream,no significant reducing trend in the midstream,but significant reducing trend in the downstream.The sediment load in upstream showed abrupt change in 1987,in midstream in 1978 and 2014,in downstream in 2012.Rainfall dominated runoff variation,contributing more than 59.0%of the total variation,while human activity,including reservoirs construction,the implementation of soil and water conservation projects,is the major factor to sediment load variation,contributing more than 87.0%of the total variation. 展开更多
关键词 Jinsha River Basin RUNOFF Sediment LOAD RAINFALL CASCADE RESERVOIR Three Gorges RESERVOIR
下载PDF
Long-term kinematics and mechanism of a deep-seated slow-moving debris slide near Wudongde hydropower station in Southwest China 被引量:2
18
作者 JIANG Shu WANG Yi-feng +1 位作者 TANG Chuan LIU Ke 《Journal of Mountain Science》 SCIE CSCD 2018年第2期364-379,共16页
Long-term kinematic research of slow- moving debris slide is rare despite of the widespread global distribution of this kind. This paper presents a study of the kinematics and mechanism of the Jinpingzi debris slide l... Long-term kinematic research of slow- moving debris slide is rare despite of the widespread global distribution of this kind. This paper presents a study of the kinematics and mechanism of the Jinpingzi debris slide located on the Jinsha river bank in southwest China. This debris slide is known to have a volume of 27×106 ms in active state for at least one century. Field survey and geotechnical investigation were carried out to define the structure of the landslide. The physical and mechanical properties of the landslide materials were obtained by in-situ and laboratory tests. Additionally, surface and subsurface displacements, as well as groundwater level fluctuations, were monitored since 2005. Movement features, especially the response of the landslide movement to rainfall, were analysed. Relationships between resisting forces and driving forces were analysed by using the limit equilibrium method assuming rigid-plastic frictional slip. The results confirmed a viscous comoonent in the long-term continuous movement resulting in the quasioverconsolidated state of the slip zone with higher strength parameters than some other types of slowmoving landslides. Both surface and subsurface displacements showed an advancing pattern by the straight outwardly inclined (rather than gently or reversely inclined) slip zone, which resulted in low resistance to the entire sliding mass. The average surface displacement rate from 2005 to 2016 was estimated to be 0.19-0.87 mm/d. Basal sliding on the silty clay seam accounted for most of the deformation with different degrees of internal deformation in different parts. Rainfall was the predominant factor affecting the kinematics of Jinpingzi landslide while the role of groundwater level, though positive, was not significant. The response of the groundwater level to rainfall infiltration was not apparent. Unlike some shallow slow-moving earth flows or mudslides, whose behaviors are directly related to the phreatic groundwater level, the mechanism for Jinpingzi landslide kinematics is more likely related to the changing weight of the sliding mass and the downslope seepage pressure in the shallow soil mass resulting from rainfall events. 展开更多
关键词 KINEMATICS Slow-moving debris slide Shear strength Rainfall infiltration Viscouscomponent
下载PDF
Key technologies for the construction of the Xiluodu high arch dam on the Jinsha River in the development of hydropower in western China 被引量:3
19
作者 Lu Youmei Fan Qixiang Zhou Shaowu Li Bingfeng Li Wenwei 《Engineering Sciences》 EI 2012年第2期16-28,共13页
Hydropower development in China is concentrated in the country's western regions.Among all the rivers in China,the lower course of the Jinsha River contains the richest hydro-energy resource,and therefore,4 mammot... Hydropower development in China is concentrated in the country's western regions.Among all the rivers in China,the lower course of the Jinsha River contains the richest hydro-energy resource,and therefore,4 mammoth hydropower plants are under construction on this particular section of the river at Wudongde,Baihetan,Xiluodu,and Xiangjiaba.The water-blocking structures of the hydropower facilities at Wudongde,Baihetan and Xiluodu are all arch dams of around 300 m high.In view of changes in the geological conditions at the foundation of the Xiluodu dam on the riverbed after excavation started,the designs of expanding foundation surface excavation and dovetailing the dam body and foundation rock on both upstream and downstream sides were introduced,allowing the arch dam and foundation to fit each other and improving the stress conditions of the dam body and foundation.By dividing the dam body into various concrete sections,the dynamic properties of concrete were adequately adjusted to the distribution of stress in the dam body.In addition,the use of the most optimal concrete material and mixture ratio allowed thermodynamics of concrete to satisfy the requirements of the strength,durability,temperature control and crack prevention of the concrete.Moreover,rigorous temperature control measures were introduced to prevent harmful cracking,thus enhancing the integrity of the arch dam.Furthermore,sophisticated construction machinery,scientific testing methods,and sound construction techniques were employed to ensure the uniformity and reliability of concrete placement.The "Digital Dam" for the Xiluodu project,which is based on the theory of total life cycle,has supplied strong support for construction process control and decision-making. 展开更多
关键词 high arch dam key technologies Xiluodu hydropower development
下载PDF
Life Loss Estimation Based on Dam-Break Flood Uncertainties and Lack of Information in Mountainous Regions of Western China 被引量:1
20
作者 Chao Wang Sherong Zhang +2 位作者 Yaosheng Tan Fei Pan Lei Yan 《Transactions of Tianjin University》 EI CAS 2017年第4期370-379,共10页
Compared with urban floods, dam-break floods are associated with greater uncertainties, including variable dam-break modes and hydrological characteristics, so conventional flood estimation methods cannot be directly ... Compared with urban floods, dam-break floods are associated with greater uncertainties, including variable dam-break modes and hydrological characteristics, so conventional flood estimation methods cannot be directly applied in the estimation of dam-break flood loss. In particular, there is scant information regarding the conditions of affected area and hydrological characteristics in southwest China. In this paper, we introduce an integrated model for estimating flood loss that is adapted to the mountainous regions of southwestern China in light of the relative lack of available information. This model has three major components: a basic information model, a dam-routed flood propagation simulation model, and a loss estimation model. We established the basic information model despite the relative lack of available information using 3S technology [remote sensing (RS); geographical information system (GIS); global positioning system (GPS)], data mining technology, and statistical analysis techniques. Our dam-routed flood propagation simulation model consists of major hydrologic processes and their governing equations for flow propagation, which we solve using finite-difference schemes. In this model, the flood propagation area is divided into grids and each grid is determined by the characteristic parameters obtained from the propagation simulation. We present a case study of the Lianghekou hydropower station in Sichuan Province, China to illustrate the practical application of this integrated model for life loss estimation. © 2017, Tianjin University and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 DAMS ESTIMATION Finite difference method Flood damage Floods Geographic information systems Global positioning system Information theory Remote sensing
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部