Conventional predictive deconvolution assumes that the reflection coefficients of the earth conform to an uncorrelated white noise sequence. The Wiener-Hopf (WH) equation is constructed to solve the filter and elimina...Conventional predictive deconvolution assumes that the reflection coefficients of the earth conform to an uncorrelated white noise sequence. The Wiener-Hopf (WH) equation is constructed to solve the filter and eliminate the correlated components of the seismic records, attenuate multiples, and improve seismic resolution. However, in practice, the primary refl ectivity series of fi eld data rarely satisfy the white noise sequence assumption, with the result that the correlated components of the primary reflectivity series are also eliminated by traditional deconvolution. This results in signal distortion. To solve this problem, we have proposed an improved method for deconvolution. First, we estimated the wavelet correlation from seismic records using the spectrum-modeling method. Second, this wavelet autocorrelation was used to construct a new autocorrelation function which contains the correlated components caused by the existence of multiples and avoids the correlated components of the primary reflectivity series. Finally, the new autocorrelation function was brought into the WH equation, and the predictive fi lter operator was calculated for deconvolution. In this paper, we have applied this new method to simulated and field data processing, and we have compared its performance with that of traditional predictive deconvolution. Our results show that the new method can adapt to non-white refl ectivity series without changing the statistical characteristics of the primary reflection coefficient series. Compared with traditional predictive deconvolution, the new method reduces processing noise and improves fidelity, all while maintaining the ability to attenuate multiples and enhance seismic resolution.展开更多
基金supported by Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(No.2017RCJJ034)
文摘Conventional predictive deconvolution assumes that the reflection coefficients of the earth conform to an uncorrelated white noise sequence. The Wiener-Hopf (WH) equation is constructed to solve the filter and eliminate the correlated components of the seismic records, attenuate multiples, and improve seismic resolution. However, in practice, the primary refl ectivity series of fi eld data rarely satisfy the white noise sequence assumption, with the result that the correlated components of the primary reflectivity series are also eliminated by traditional deconvolution. This results in signal distortion. To solve this problem, we have proposed an improved method for deconvolution. First, we estimated the wavelet correlation from seismic records using the spectrum-modeling method. Second, this wavelet autocorrelation was used to construct a new autocorrelation function which contains the correlated components caused by the existence of multiples and avoids the correlated components of the primary reflectivity series. Finally, the new autocorrelation function was brought into the WH equation, and the predictive fi lter operator was calculated for deconvolution. In this paper, we have applied this new method to simulated and field data processing, and we have compared its performance with that of traditional predictive deconvolution. Our results show that the new method can adapt to non-white refl ectivity series without changing the statistical characteristics of the primary reflection coefficient series. Compared with traditional predictive deconvolution, the new method reduces processing noise and improves fidelity, all while maintaining the ability to attenuate multiples and enhance seismic resolution.