The present work reports the development of nonlinear time series prediction method of genetic algorithm(GA) with singular spectrum analysis(SSA) for forecasting the surface wind of a point station in the South Ch...The present work reports the development of nonlinear time series prediction method of genetic algorithm(GA) with singular spectrum analysis(SSA) for forecasting the surface wind of a point station in the South China Sea(SCS) with scatterometer observations.Before the nonlinear technique GA is used for forecasting the time series of surface wind,the SSA is applied to reduce the noise.The surface wind speed and surface wind components from scatterometer observations at three locations in the SCS have been used to develop and test the technique.The predictions have been compared with persistence forecasts in terms of root mean square error.The predicted surface wind with GA and SSA made up to four days(longer for some point station) in advance have been found to be significantly superior to those made by persistence model.This method can serve as a cost-effective alternate prediction technique for forecasting surface wind of a point station in the SCS basin.展开更多
In operational data assimilation systems, observation-error covariance matrices are commonly assumed to be diagonal.However, inter-channel and spatial observation-error correlations are inevitable for satellite radian...In operational data assimilation systems, observation-error covariance matrices are commonly assumed to be diagonal.However, inter-channel and spatial observation-error correlations are inevitable for satellite radiances. The observation errors of the Microwave Temperature Sounder(MWTS) and Microwave Humidity Sounder(MWHS) onboard the FengYun-3A(FY-3A) and FY-3B satellites are empirically assigned and considered to be uncorrelated when they are assimilated into the WRF model's Community Variational Data Assimilation System(WRFDA). To assimilate MWTS and MWHS measurements optimally, a good characterization of their observation errors is necessary. In this study, background and analysis residuals were used to diagnose the correlated observation-error characteristics of the MWTS and MWHS. It was found that the error standard deviations of the MWTS and MWHS were less than the values used in the WRFDA. MWTS had small inter-channel errors, while MWHS had significant inter-channel errors. The horizontal correlation length scales of MWTS and MWHS were about 120 and 60 km, respectively. A comparison between the diagnosis for instruments onboard the two satellites showed that the observation-error characteristics of the MWTS or MWHS were different when they were onboard different satellites. In addition, it was found that the error statistics were dependent on latitude and scan positions.The forecast experiments showed that using a modified thinning scheme based on diagnosed statistics can improve forecast accuracy.展开更多
Plasma’s conductive and dielectric properties have been well known for decades. Plasma antenna is a general terms representing using plasma as a conductive medium to transmit or reflect signals. It has unique propert...Plasma’s conductive and dielectric properties have been well known for decades. Plasma antenna is a general terms representing using plasma as a conductive medium to transmit or reflect signals. It has unique properties like low RCS (radar cross section), variable impedance and instant on-off capability. Previous plasma antenna uses RF power to generate the plasma column. We developed AC-biased (alternating current) plasma antenna, which has larger operation frequency scale and lower sustaining power. Signals propagated are coupled into the plasma antenna via capacitive coupling. Impedance of the plasma shifts slightly with the AC current. Radiation pattern of the plasma antenna is less uniform than metal antenna and its gain is related to AC power, from the measuring results of AC-biased plasma antenna we found its advantages compare to the plasma antenna excited by the surface wave.展开更多
The westward migration of tropical cyclone(TC)activity has been identified in the western North Pacific(WNP),but the related features and causes remain elusive.Here,based on the best track data from China,Japan,and th...The westward migration of tropical cyclone(TC)activity has been identified in the western North Pacific(WNP),but the related features and causes remain elusive.Here,based on the best track data from China,Japan,and the US,and the NCEP–NCAR reanalysis data in 1982–2020,we investigate characteristics of the westward migration of the WNP TC activity with various metrics,and reveal possible causes for the migration of TC tracks through analyzing its seasonality and dependence on environmental conditions.The results show that the WNP TCs show significant westward migrations in a number of metrics,including location of tracks,genesis,the first track point at which TC reaches its lifetime-maximum intensity,and the last track point in the TC lifetime.It is found that TC tracks exhibit more significant westward migrations in the easterly steering flow than in the westerly steering flow.Meanwhile,the TC longitude shift shows notable seasonal variations,for which the TCs in the easterlies move further west than those in the westerlies during July–September,vice versa during October–December.The dependence of the westward migration of TC tracks on background steering flow is associated with the different environmental conditions.The westward shift in the westerly steering is mainly due to the reduced vertical wind shear(VWS),while the weakened zonal easterly steering and reduced VWS are both closely related to the westward migration in the easterly steering.These results have important implications for understanding current and future variations in TC longitude shift.展开更多
To overcome the problem that a single feature can not reflect the state of machinery in different stages,a method of vibration feature fusion based on self-organizing map(SOM) is presented.Minimum quantization error(M...To overcome the problem that a single feature can not reflect the state of machinery in different stages,a method of vibration feature fusion based on self-organizing map(SOM) is presented.Minimum quantization error(MQE) is obtained unsupervised based on SOM network.And trend information of the MQE curve is extracted by the wavelet packet to enhance state differentiating.Experimental flat is designed for bearing accelerating fatigue.And experimental results show that the method of vibration feature fusion based on SOM can reflect the state of machinery in different stages effectively.展开更多
The change detection(CD)of heterogeneous remote sensing images is an important but challenging task.The difficulty is to obtain the change information by directly comparing the different statistical characteristics of...The change detection(CD)of heterogeneous remote sensing images is an important but challenging task.The difficulty is to obtain the change information by directly comparing the different statistical characteristics of the images acquired by different sensors.This paper proposes an unsupervised method for heterogeneous image CD based on an image domain transfer network.First,an attention mechanism is added to the Cycle-generative adversarial networks(Cycle-GANs)to obtain a more consistent feature expression by transferring bi-temporal heterogeneous images to the common domain.The Euclidean distance of the corresponding pixels is calculated in the common domain to form a difference map,and a threshold algorithm is applied to get a rough change map.Finally,the proposed adaptive Discrete Cosine Transform(DCT)algorithm reduces the noise introduced by false detection,and the final change map is obtained.The proposed method is verified on three real heterogeneous CD datasets and compared with the current state-of-the-art methods.The results show that the proposed method is accurate and robust for performing heterogeneous CD tasks.展开更多
Traditional variational data assimilation (VDA) with only one regularization parameter constraint cannot produce optimal error tuning for all observations. In this paper, a new data assimilation method of "four dim...Traditional variational data assimilation (VDA) with only one regularization parameter constraint cannot produce optimal error tuning for all observations. In this paper, a new data assimilation method of "four dimensional variational data assimilation (4D-Var) with multiple regularization parameters as a weak constraint (Tikh-4D-Var)" is proposed by imposing different reg- ularization parameters for different observations. Meanwhile, a new multiple regularization parameters selection method, which is suitable for actual high-dimensional data assimilation system, is proposed based on the posterior information of 4D-Var system. Compared with the traditional single regularization parameter selection method, computation of the proposed multiple regularization parameters selection method is smaller. Based on WRF3.3.1 4D-Vat data assimilation system, initiali- zation and simulation of typhoon Chaba (2010) with the new Tikh-4D-Var method are compared with its counterpart 4D-Var to demonstrate the effectiveness of the new method. Results show that the new Tikh-4D-Var method can accelerate the con vergence with less iterations. Moreover, compared with 4D-Var method, the typhoon track, intensity (including center surface pressure and maximum wind speed) and structure prediction are obviously improved with Tikh-4D-Var method for 72-h pre- diction. In addition, the accuracy of the observation error variances can be reflected by the multiple regularization parameters.展开更多
When voyaging,ships are subject to inevitable hull deformations caused by the changes in the environmental temperature and external stress.These are a crucial source of errors when measuring data using a spacecraft tr...When voyaging,ships are subject to inevitable hull deformations caused by the changes in the environmental temperature and external stress.These are a crucial source of errors when measuring data using a spacecraft tracking,telemetry,and control(TT&C) ship.A prototype system based on photogrammetry was developed for the real-time measurement of a spacecraft TT&C ship's hull deformation.This system has high accuracy,a simple structure,and convenient maintenance,and requires few changes to the ship's structures.To improve its performance,an estimation approach is proposed for hull deformation angles.With the proposed approach,the central positions of cross spots in successive frames can be predicted based on the prediction of the camera's attitude,and their extract locations can be found by defining a series of small windows around each predictive location.Then,the optimal estimate of the camera's attitude is updated by the designed extended Kalman filter using the extracted cross spots and their corresponding local coordinates,with which the hull deformation angles can be found.To verify the proposed measurement approach,its performance was tested during the normal sailing,floating,and rocking on the sea of a spacecraft TT&C ship.The experimental testing results demonstrated that the proposed approach performs well in terms of accuracy and robustness.It can satisfy the hull deformation measurement requirement for a spacecraft TT&C ship in real time.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41230421 and 41605075)the National Basic Research Program of China(Grant No.2013CB430101)
文摘The present work reports the development of nonlinear time series prediction method of genetic algorithm(GA) with singular spectrum analysis(SSA) for forecasting the surface wind of a point station in the South China Sea(SCS) with scatterometer observations.Before the nonlinear technique GA is used for forecasting the time series of surface wind,the SSA is applied to reduce the noise.The surface wind speed and surface wind components from scatterometer observations at three locations in the SCS have been used to develop and test the technique.The predictions have been compared with persistence forecasts in terms of root mean square error.The predicted surface wind with GA and SSA made up to four days(longer for some point station) in advance have been found to be significantly superior to those made by persistence model.This method can serve as a cost-effective alternate prediction technique for forecasting surface wind of a point station in the SCS basin.
基金funded by the National Basic Research (973) Program of China (Grant No. 2015CB452802)the National Natural Science Foundation of China (Grant Nos. 41230421, 41605075, and 41675058)
文摘In operational data assimilation systems, observation-error covariance matrices are commonly assumed to be diagonal.However, inter-channel and spatial observation-error correlations are inevitable for satellite radiances. The observation errors of the Microwave Temperature Sounder(MWTS) and Microwave Humidity Sounder(MWHS) onboard the FengYun-3A(FY-3A) and FY-3B satellites are empirically assigned and considered to be uncorrelated when they are assimilated into the WRF model's Community Variational Data Assimilation System(WRFDA). To assimilate MWTS and MWHS measurements optimally, a good characterization of their observation errors is necessary. In this study, background and analysis residuals were used to diagnose the correlated observation-error characteristics of the MWTS and MWHS. It was found that the error standard deviations of the MWTS and MWHS were less than the values used in the WRFDA. MWTS had small inter-channel errors, while MWHS had significant inter-channel errors. The horizontal correlation length scales of MWTS and MWHS were about 120 and 60 km, respectively. A comparison between the diagnosis for instruments onboard the two satellites showed that the observation-error characteristics of the MWTS or MWHS were different when they were onboard different satellites. In addition, it was found that the error statistics were dependent on latitude and scan positions.The forecast experiments showed that using a modified thinning scheme based on diagnosed statistics can improve forecast accuracy.
文摘Plasma’s conductive and dielectric properties have been well known for decades. Plasma antenna is a general terms representing using plasma as a conductive medium to transmit or reflect signals. It has unique properties like low RCS (radar cross section), variable impedance and instant on-off capability. Previous plasma antenna uses RF power to generate the plasma column. We developed AC-biased (alternating current) plasma antenna, which has larger operation frequency scale and lower sustaining power. Signals propagated are coupled into the plasma antenna via capacitive coupling. Impedance of the plasma shifts slightly with the AC current. Radiation pattern of the plasma antenna is less uniform than metal antenna and its gain is related to AC power, from the measuring results of AC-biased plasma antenna we found its advantages compare to the plasma antenna excited by the surface wave.
基金Supported by the National Natural Science Foundation of China(42075011 and 41605075)。
文摘The westward migration of tropical cyclone(TC)activity has been identified in the western North Pacific(WNP),but the related features and causes remain elusive.Here,based on the best track data from China,Japan,and the US,and the NCEP–NCAR reanalysis data in 1982–2020,we investigate characteristics of the westward migration of the WNP TC activity with various metrics,and reveal possible causes for the migration of TC tracks through analyzing its seasonality and dependence on environmental conditions.The results show that the WNP TCs show significant westward migrations in a number of metrics,including location of tracks,genesis,the first track point at which TC reaches its lifetime-maximum intensity,and the last track point in the TC lifetime.It is found that TC tracks exhibit more significant westward migrations in the easterly steering flow than in the westerly steering flow.Meanwhile,the TC longitude shift shows notable seasonal variations,for which the TCs in the easterlies move further west than those in the westerlies during July–September,vice versa during October–December.The dependence of the westward migration of TC tracks on background steering flow is associated with the different environmental conditions.The westward shift in the westerly steering is mainly due to the reduced vertical wind shear(VWS),while the weakened zonal easterly steering and reduced VWS are both closely related to the westward migration in the easterly steering.These results have important implications for understanding current and future variations in TC longitude shift.
文摘To overcome the problem that a single feature can not reflect the state of machinery in different stages,a method of vibration feature fusion based on self-organizing map(SOM) is presented.Minimum quantization error(MQE) is obtained unsupervised based on SOM network.And trend information of the MQE curve is extracted by the wavelet packet to enhance state differentiating.Experimental flat is designed for bearing accelerating fatigue.And experimental results show that the method of vibration feature fusion based on SOM can reflect the state of machinery in different stages effectively.
基金supported by Military Commission Science and Technology Committee Leading Fund of China:[Grant Number 18-163-00-TS-004-080-01].
文摘The change detection(CD)of heterogeneous remote sensing images is an important but challenging task.The difficulty is to obtain the change information by directly comparing the different statistical characteristics of the images acquired by different sensors.This paper proposes an unsupervised method for heterogeneous image CD based on an image domain transfer network.First,an attention mechanism is added to the Cycle-generative adversarial networks(Cycle-GANs)to obtain a more consistent feature expression by transferring bi-temporal heterogeneous images to the common domain.The Euclidean distance of the corresponding pixels is calculated in the common domain to form a difference map,and a threshold algorithm is applied to get a rough change map.Finally,the proposed adaptive Discrete Cosine Transform(DCT)algorithm reduces the noise introduced by false detection,and the final change map is obtained.The proposed method is verified on three real heterogeneous CD datasets and compared with the current state-of-the-art methods.The results show that the proposed method is accurate and robust for performing heterogeneous CD tasks.
基金supported by National Natural Science Foundation of China(Grants Nos.41230421,41005029,41105012,41375106 and 41105065)National Public Benefit(Meteorology)Research Foundation of China(Grant No.GYHY 201106004)
文摘Traditional variational data assimilation (VDA) with only one regularization parameter constraint cannot produce optimal error tuning for all observations. In this paper, a new data assimilation method of "four dimensional variational data assimilation (4D-Var) with multiple regularization parameters as a weak constraint (Tikh-4D-Var)" is proposed by imposing different reg- ularization parameters for different observations. Meanwhile, a new multiple regularization parameters selection method, which is suitable for actual high-dimensional data assimilation system, is proposed based on the posterior information of 4D-Var system. Compared with the traditional single regularization parameter selection method, computation of the proposed multiple regularization parameters selection method is smaller. Based on WRF3.3.1 4D-Vat data assimilation system, initiali- zation and simulation of typhoon Chaba (2010) with the new Tikh-4D-Var method are compared with its counterpart 4D-Var to demonstrate the effectiveness of the new method. Results show that the new Tikh-4D-Var method can accelerate the con vergence with less iterations. Moreover, compared with 4D-Var method, the typhoon track, intensity (including center surface pressure and maximum wind speed) and structure prediction are obviously improved with Tikh-4D-Var method for 72-h pre- diction. In addition, the accuracy of the observation error variances can be reflected by the multiple regularization parameters.
基金supported by the National Natural Science Foundation of China(Grant No.11272347)
文摘When voyaging,ships are subject to inevitable hull deformations caused by the changes in the environmental temperature and external stress.These are a crucial source of errors when measuring data using a spacecraft tracking,telemetry,and control(TT&C) ship.A prototype system based on photogrammetry was developed for the real-time measurement of a spacecraft TT&C ship's hull deformation.This system has high accuracy,a simple structure,and convenient maintenance,and requires few changes to the ship's structures.To improve its performance,an estimation approach is proposed for hull deformation angles.With the proposed approach,the central positions of cross spots in successive frames can be predicted based on the prediction of the camera's attitude,and their extract locations can be found by defining a series of small windows around each predictive location.Then,the optimal estimate of the camera's attitude is updated by the designed extended Kalman filter using the extracted cross spots and their corresponding local coordinates,with which the hull deformation angles can be found.To verify the proposed measurement approach,its performance was tested during the normal sailing,floating,and rocking on the sea of a spacecraft TT&C ship.The experimental testing results demonstrated that the proposed approach performs well in terms of accuracy and robustness.It can satisfy the hull deformation measurement requirement for a spacecraft TT&C ship in real time.