With the data from the Tropical Cyclone Yearbooks between 1970 and 2001, statistical analyses were performed to study the climatic features of landfall TCs (noted as TCs hereafter) in China with particular attention...With the data from the Tropical Cyclone Yearbooks between 1970 and 2001, statistical analyses were performed to study the climatic features of landfall TCs (noted as TCs hereafter) in China with particular attention tbcused on landfall frequency, locations, sustaining, decaying, transition, intensification and dissipation etc. The results indicate that the sustaining periods of TC over land are quite different for different landfall spots, and increased from Guangxi to Zhejiang. The most obvious decreasing of TC intensity occurs mainly within 12 hours after landfall. The stronger a TC is, the more it decays, The areas over which TCs are dissipated can be in Heilongjiang, the northernmost, and Yunnan, the westernmost. Besides, Guangxi is an area with high dissipating rate and subject to TC dissipation as compared with the other coastal regions.展开更多
Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall...Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall as Winnie, although it struck Liaodong Peninsula directly while Winnie passed through the Bohai Sea. The relations between the ET processes and the precipitation over Liaodong Peninsula are examined. The result shows that the precipitation difference between Winnie and Matsa was closely related to the interactions between the westerly systems and typhoons during their ET processes. Winnie was captured by the upper westerly trough and then coupled with it when moving to the mid-latitudes, and the positive anomaly of moist potential vorticity (MPV) was transported downward from the upper troposphere over the remnant circulation of the tropical cyclone (TC). It was favorable to the interaction between tropical warm and wet air and westerly cold air, causing convective cloud clusters to form and develop. The rain belt composed of several meso-β cloud clusters over the Liaodong Peninsula, resulting in heavy rainfall. On the other hand, Matsa did not couple with any upper trough during its ET process and the positive anomaly of MPV in the upper troposphere and its downward transfer were weak. Only one meso-β cloud cluster occurred in Matsa’s rain belt during its ET process that tended to lessen rainfall over Liaodong Peninsula.展开更多
基金National Natural Science Foundation of China (40575018) Shanghai Typhoon ResearchFoundation (2003ST015)
文摘With the data from the Tropical Cyclone Yearbooks between 1970 and 2001, statistical analyses were performed to study the climatic features of landfall TCs (noted as TCs hereafter) in China with particular attention tbcused on landfall frequency, locations, sustaining, decaying, transition, intensification and dissipation etc. The results indicate that the sustaining periods of TC over land are quite different for different landfall spots, and increased from Guangxi to Zhejiang. The most obvious decreasing of TC intensity occurs mainly within 12 hours after landfall. The stronger a TC is, the more it decays, The areas over which TCs are dissipated can be in Heilongjiang, the northernmost, and Yunnan, the westernmost. Besides, Guangxi is an area with high dissipating rate and subject to TC dissipation as compared with the other coastal regions.
基金National Key Fundamental Project for Research Development and Plan (2004CB418301)Natural Science Foundation of China (40575018, 40675033)
文摘Both of Typhoon Winnie (9711) and Matsa (0509) underwent an extratropical transition (ET) process when they moved northward after landfall and affected Liaodong Peninsula. However, Matsa produced half as much rainfall as Winnie, although it struck Liaodong Peninsula directly while Winnie passed through the Bohai Sea. The relations between the ET processes and the precipitation over Liaodong Peninsula are examined. The result shows that the precipitation difference between Winnie and Matsa was closely related to the interactions between the westerly systems and typhoons during their ET processes. Winnie was captured by the upper westerly trough and then coupled with it when moving to the mid-latitudes, and the positive anomaly of moist potential vorticity (MPV) was transported downward from the upper troposphere over the remnant circulation of the tropical cyclone (TC). It was favorable to the interaction between tropical warm and wet air and westerly cold air, causing convective cloud clusters to form and develop. The rain belt composed of several meso-β cloud clusters over the Liaodong Peninsula, resulting in heavy rainfall. On the other hand, Matsa did not couple with any upper trough during its ET process and the positive anomaly of MPV in the upper troposphere and its downward transfer were weak. Only one meso-β cloud cluster occurred in Matsa’s rain belt during its ET process that tended to lessen rainfall over Liaodong Peninsula.