期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Two flowers per seed:Derivatives of CoG@F127/GO with enhanced catalytic performance of overall water splitting
1
作者 Yue Han Chen Qian +7 位作者 Huayu Wu Xing Chen Xue Wu Wei He Hui Yan Guisheng Li Guowang Diao Ming Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期761-769,共9页
In this work,cobalt glycerate(CoG@F127)nanosheets grown on the surface of graphene oxide(GO),i.e.CoG@F127/GO,have been synthesized with the assistance of nonionic surfactant Pluronic F127 via a hydrothermal method.Aft... In this work,cobalt glycerate(CoG@F127)nanosheets grown on the surface of graphene oxide(GO),i.e.CoG@F127/GO,have been synthesized with the assistance of nonionic surfactant Pluronic F127 via a hydrothermal method.After calcination,CoG@F127/GO is transformed into one derivative,Co nanoparticles coated with a trace amount of carbon(Co-C)on GO(Co-C/GO).The Co nanoparticles consist of an atypical core-shell structure,in which the core and the shell are both Co.Co-C anchored on GO can avoid the nanoparticles aggregation and expose more active sites for hydrogen evolution reaction(HER)to significantly improve the catalyst activity of HER.CoG@F127/GO is phosphatized to form the other derivate,cobalt pyrophosphate coated with a small amount of carbon(Co_(2)P_(2)O_(7)-C)on GO(Co_(2)P_(2)O_(7)-C/GO).Co_(2)P_(2)O_(7)-C/GO composite owns a large electrochemical active surface area(ECSA)and fast rate towards oxygen evolution reaction(OER).Furthermore,the two derivatives of CoG@F127/GO,i.e.Co-C/GO and Co_(2)P_(2)O_(7)-C/GO as twin flowers,are assembled into an overall water splitting electrolytic cell with a cell voltage of 1.56 V to deliver a current density of 10 mA cm^(-2). 展开更多
关键词 Surfactant assistance Cobalt glycerate nanosheets Atypical core-shell structure Cobalt pyrophosphate Water splitting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部