AIM: To observe competitive inhibition of adherence of enterotoxigenic Escherichia coli (ETEC), enteropathogenic Escherichia coli (EPEC) and Clostridium difficile ( C. difficile) to intestinal epithelial cell line Lov...AIM: To observe competitive inhibition of adherence of enterotoxigenic Escherichia coli (ETEC), enteropathogenic Escherichia coli (EPEC) and Clostridium difficile ( C. difficile) to intestinal epithelial cell line Lovo by purified adhesin of Bifidobacterium adolescentis 1027 (B. ado 1027). METHODS: The binding of bacteria to intestinal epithelial cell line Lovo was counted by adhesion assay. The inhibition of adherence of ETEC, EPEC and C. difficile to intestinal epithelial cell line Lovo by purified adhesin of B. ado 1027 was evaluated quantitatively by flow cytometry. RESULTS: The purified adhesin at the concentration of 10 IJg/mL, 20 IJg/mL and 30 IJg/mL except at 1 IJg/mL and 5 IJg/mL could inhibit significantly the adhesion of ETEC, EPEC and C. difficile to intestinal epithelial cell line Lovo. Moreover, we observed that a reduction in bacterial adhesion was occurred with increase in the concentration of adhesin, and MFI (Mean fluorescent intensity) was decreased with increase in the concentration of adhesin. CONCLUSION: The purified adhesin of B. ado 1027 can inhibit the adhesion of ETEC, EPEC and C. difficile to intestinal epithelial cell line Lovo in a dose-dependent manner.展开更多
AIM: To ascertain the molecule mechanism of nuclear factor-KB (NF-κB) inhibitor curcumin preventive and therapeutic effects in rats' colitis induced by trinitrobenzene sulfonic acid (TNBS). METHODS: Sixty rats wi...AIM: To ascertain the molecule mechanism of nuclear factor-KB (NF-κB) inhibitor curcumin preventive and therapeutic effects in rats' colitis induced by trinitrobenzene sulfonic acid (TNBS). METHODS: Sixty rats with TNBS-induced colitis were treated with 2.0% curcumin in the diet. Thirty positive control rats were treated with 0.5% sulfasalazine (SASP). Thirty negative control rats and thirty model rats were treated with general diet. Changes of body weight together with histological scores were evaluated. Survival rates were also evaluated. Cell nuclear NF-κB activity in colonic mucosa was evaluated by using electrophoretic mobility shift assay. Cytoplasmic IκB protein in colonic mucosa was detected by using Western Blot analysis. Cytokine messenger expression in colonic tissue was assessed by using semiquantitative reverse-transcription polymerase chain reaction. RESULTS: Treatment with curcumin could prevent and treat both wasting and histopathologic signs of rats with TNBS-induced intestinal inflammation. In accordance with these findings, NF-κB activation in colonic mucosa was suppressed in the curcumin-treated groups. Degradations of cytoplasmic IκB protein in colonic mucosa were blocked by curcumin treatment. Proinflammatory cytokine messenger RNA expression in colonic mucosa was also suppressed. CONCLUSION: This study shows that NF-κB inhibitor curcumin could prevent and improve experimental colitis in murine model with inflammatory bowel disease (IBD). The findings suggest that NF-κB inhibitor curcumin could be a potential target for the patients with IBD.展开更多
基金Supported by Natural Science Foundation of Guangdong Province,No.010621
文摘AIM: To observe competitive inhibition of adherence of enterotoxigenic Escherichia coli (ETEC), enteropathogenic Escherichia coli (EPEC) and Clostridium difficile ( C. difficile) to intestinal epithelial cell line Lovo by purified adhesin of Bifidobacterium adolescentis 1027 (B. ado 1027). METHODS: The binding of bacteria to intestinal epithelial cell line Lovo was counted by adhesion assay. The inhibition of adherence of ETEC, EPEC and C. difficile to intestinal epithelial cell line Lovo by purified adhesin of B. ado 1027 was evaluated quantitatively by flow cytometry. RESULTS: The purified adhesin at the concentration of 10 IJg/mL, 20 IJg/mL and 30 IJg/mL except at 1 IJg/mL and 5 IJg/mL could inhibit significantly the adhesion of ETEC, EPEC and C. difficile to intestinal epithelial cell line Lovo. Moreover, we observed that a reduction in bacterial adhesion was occurred with increase in the concentration of adhesin, and MFI (Mean fluorescent intensity) was decreased with increase in the concentration of adhesin. CONCLUSION: The purified adhesin of B. ado 1027 can inhibit the adhesion of ETEC, EPEC and C. difficile to intestinal epithelial cell line Lovo in a dose-dependent manner.
基金Supported by the National Natural Science Foundation of China, No. 30270078 the Guangdong Traditional Chinese and Medicine Bureau Foundation of China, No. 1040191
文摘AIM: To ascertain the molecule mechanism of nuclear factor-KB (NF-κB) inhibitor curcumin preventive and therapeutic effects in rats' colitis induced by trinitrobenzene sulfonic acid (TNBS). METHODS: Sixty rats with TNBS-induced colitis were treated with 2.0% curcumin in the diet. Thirty positive control rats were treated with 0.5% sulfasalazine (SASP). Thirty negative control rats and thirty model rats were treated with general diet. Changes of body weight together with histological scores were evaluated. Survival rates were also evaluated. Cell nuclear NF-κB activity in colonic mucosa was evaluated by using electrophoretic mobility shift assay. Cytoplasmic IκB protein in colonic mucosa was detected by using Western Blot analysis. Cytokine messenger expression in colonic tissue was assessed by using semiquantitative reverse-transcription polymerase chain reaction. RESULTS: Treatment with curcumin could prevent and treat both wasting and histopathologic signs of rats with TNBS-induced intestinal inflammation. In accordance with these findings, NF-κB activation in colonic mucosa was suppressed in the curcumin-treated groups. Degradations of cytoplasmic IκB protein in colonic mucosa were blocked by curcumin treatment. Proinflammatory cytokine messenger RNA expression in colonic mucosa was also suppressed. CONCLUSION: This study shows that NF-κB inhibitor curcumin could prevent and improve experimental colitis in murine model with inflammatory bowel disease (IBD). The findings suggest that NF-κB inhibitor curcumin could be a potential target for the patients with IBD.