Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their re...Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their relative contributions to seed set are unclear.In this study,a 2-year field experiment including three sowing dates in each year and 20 inbred lines was conducted.Seed set,kernel number per ear,and grain yield were all reduced by more than 80%in the third sowing dates compared to the first sowing dates.Pollen viability,silk emergence ratio,and anthesis-silking interval were the key determinants of seed set under heat stress;and their correlation coefficients were 0.89^(***),0.65^(***),and-0.72^(***),respectively.Vapor pressure deficit(VPD)and relative air humidity(RH)both had significant correlations with pollen viability and the silk emergence ratio.High RH can alleviate the impacts of heat on maize seed set by maintaining high pollen viability and a high silk emergence ratio.Under a warming climate from 2020 to 2050,VPD will decrease due to the increased RH.Based on their pollen viability and silk emergence ratios,the 20 genotypes fell into four different groups.The group with high pollen viability and a high silk emergence ratio performed better under heat stress,and their performance can be further improved by combining the improved flowering pattern traits.展开更多
Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the act...Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the activities of Chl a-degrading enzymes after silking,and the post-silking dry matter accumulation and grain yield under multiple planting densities and N fertilization rates.The dynamic change of GLA_(ear)after silking fitted to the logistic model,and the GLA_(ear) duration and the GLAearat 42 d after silking were affected mainly by the duration of the initial senescence period(T_(1))which was a key factor of the leaf senescence.The average chlorophyllase(CLH)activity was 8.3 times higher than pheophytinase activity and contributed most to the Chl content,indicating that CLH is a key enzyme for degrading Chl a in maize.Increasing density increased the CLH activity and decreased the Chl content,T1,GLAear,and GLA_(ear) duration.Under high density,appropriate N application reduced CLH activity,increased Chl content,prolonged T1,alleviated high-density-induced leaf senescence,and increased post-silking dry matter accumulation and grain yield.展开更多
Tyrosine phosphorylation is crucial for controlling normal cell growth,survival,intercellular communication,gene transcription,immune responses,and other processes.protein tyrosine phosphatase(PTP)and protein tyrosine...Tyrosine phosphorylation is crucial for controlling normal cell growth,survival,intercellular communication,gene transcription,immune responses,and other processes.protein tyrosine phosphatase(PTP)and protein tyrosine kinases(PTK)can achieve this goal by regulating multiple signaling pathways.Oedaleus decorus asiaticus is an important pest that infests the Mongolian Plateau grassland.We aimed to evaluate the survival rate,growth rate,overall performance,and ovarian developmental morphology of the 4th instar nymphs of O.decorus asiaticus while inhibiting the activity of protein tyrosine phosphatase-1B(PTP1B)and PTK.In addition,the expression and protein phosphorylation levels of key genes in the MAPK signaling pathway and antioxidant enzyme activity were assessed.The results showed no significant differences in survival rate,growth rate,or overall performance between PTP1B inhibitor treatment and control.However,after PTK inhibitor treatment,these indexes were significantly lower than those in the control.The ovarian size of female larvae after 15 days of treatment with PTK inhibitors showed significantly slower development,while female larvae treated with PTP1B exhibited faster ovarian growth than the control group.In comparison to controls and nymphs treated with PTK inhibitors,the expression and phosphorylation levels of key genes in the MAPK signaling pathway under PTP1B inhibitor treatments were significantly higher in 4th instar nymphs.However,reactiveoxygen(ROS)species levels and the activities of NADPH oxidase and other antioxidant enzymes were considerably reduced,although they were significantly greater in the PTK inhibitor treatment.The results suggest that PTP1B and PTK feedback inhibition in the mitogen-activated-protein kinases(MAPK)signal transfer can regulate the physiological metabolism of the insect as well as its developmental rate.These findings can facilitate future uses of PTP1B and PTK inhibitors in controlling insect development to help control pest populations.展开更多
White mold of pea caused by Sclerotinia sclerotiorum is a common disease in China.However,we discovered that the diverse Sclerotinia species could cause white mold on pea plants in Chongqing and Sichuan of China durin...White mold of pea caused by Sclerotinia sclerotiorum is a common disease in China.However,we discovered that the diverse Sclerotinia species could cause white mold on pea plants in Chongqing and Sichuan of China during recent disease surveys.Thus,the objective of this study was to confirm the causal agents from diseased pea plants.The obtained isolates of white mold from Chongqing and Sichuan were identified by morphological characters and molecular characterization to determine the pathogen species,and their pathogenicity was confirmed on pea through completing Koch’s postulates.Fungal isolates of Sclerotinia-like were obtained from diseased plants or sclerotia.Based on morphological characteristics and molecular characterization,30 isolates were identified to three species,six isolates as S.minor,seven as S.sclerotiorum,and 17 as S.trifoliorum.In pathogenicity tests on pea cultivars Zhongwan 4 and Longwan 1,all 30 isolates caused typical symptoms of white mold on the inoculated plants,and the inoculated pathogens were re-isolated from the diseased plants.This study confirmed that white mold of pea was caused by three Sclerotinia species,S.sclerotiorum,S.minor and S.trifoliorum in Chongqing and Sichuan.It is the first report that S.minor and S.trifoliorum cause white mold of pea in Southwest China.展开更多
The research analyzed the theoretical basis of the sustainable development of the Chongqing lava bean in terms of the current market economy situation. In regard to practice, several strategies will be suggested for t...The research analyzed the theoretical basis of the sustainable development of the Chongqing lava bean in terms of the current market economy situation. In regard to practice, several strategies will be suggested for the Chongqing fava bean industry to guide the development of Chongqing's efficient fava bean agriculture.展开更多
With the development of society and economy and increasing awareness of people's diet and health care,the demand for waxy corn and its processed products has been rising. At present,the planting of waxy corn in Ch...With the development of society and economy and increasing awareness of people's diet and health care,the demand for waxy corn and its processed products has been rising. At present,the planting of waxy corn in Chongqing is taking shape,but the waxy corn processing is still in the initial stage with smaller enterprise scale and fewer processing product variety. Based on the analysis of the development advantages and disadvantages of waxy corn processing industry in Chongqing,this paper brings forward the development ideas and strategies of Chongqing waxy corn processing industry from three aspects of production,processing and policy.展开更多
Zinc(Zn) is an essential trace mineral that is required for plant growth and development. A number of protein transporters, which are involved in Zn uptake, translocation and distribution, are finely regulated to main...Zinc(Zn) is an essential trace mineral that is required for plant growth and development. A number of protein transporters, which are involved in Zn uptake, translocation and distribution, are finely regulated to maintain Zn homeostasis in plant. In this study, we functionally characterized an ATP-binding cassette(ABC) transporter gene, OsPDR7, which is involved in Zn homeostasis. Os PDR7 encodes a plasma membrane-localized protein that is expressed mainly in the exodermis and xylem in the rice root.ospdr7 mutants resulted in higher Zn accumulation compared with the wild type. Heterogeneous expression of OsPDR7 in a yeast mutant rescued the Zn-deficiency phenotype, implying transport activity of OsPDR7 to Zn in yeast. However, no ZIP genes except for OsZIP9 showed change in expression profile in the ospdr7 mutants, which suggested that OsPDR7 maintains cellular Zn homeostasis through regulating Os ZIP9 expression. RNA-Seq analysis further revealed a set of differentially expressed genes between the wild type and ospdr7 mutants that allowed us to propose a possible OsPDR7-associated signaling network involving transporters, hormone responsive genes, and transcription factors. Our results revealed a novel transporter involved in the regulation of Zn homeostasis and will pave the way toward a better understanding of the fine-tuning of gene expression in the network of transporter genes.展开更多
Gibberellin 2-oxidases(GA2ox)are important enzymes that maintain the balance of bioactive GAs in plants.GA2ox genes have been identified and characterized in many plants,but these genes were not investigated in Brassi...Gibberellin 2-oxidases(GA2ox)are important enzymes that maintain the balance of bioactive GAs in plants.GA2ox genes have been identified and characterized in many plants,but these genes were not investigated in Brassica napus.Here,we identified 31 GA2ox genes in B.napus and 15 of these BnaGA2ox genes were distributed in the A and C subgenomes.Subcellular localization predictions suggested that all BnaGA2ox proteins were localized in the cytoplasm,and gene structure analysis showed that the BnaGA2ox genes contained 2–4 exons.Phylogenetic analysis indicated that BnGA2ox family proteins in monocotyledons and dicotyledons can be divided into four groups,including two C_(19)-GA2ox and two C_(20)-GA2ox clades.Group 4 is a C_(20)-GA2ox Class discovered recently.Most BnaGA2ox genes had a syntenic relationship with AtGA2ox genes.BnaGA2ox genes in the C subgenome had experienced stronger selection pressure than genes in the A subgenome.BnaGA2ox genes were highly expressed in specific tissues such as those involved in growth and development,and most of them were mainly involved in abiotic responses,regulation of phytohormones and growth and development.Our study provided a valuable evolutionary analysis of GA2ox genes in monocotyledons and dicotyledons,as well as an insight into the biological functions of GA2ox family genes in B.napus.展开更多
The Northeast Plain is the largest maize production area in China,and drip irrigation has recently been proposed to cope with the effects of frequent droughts and to improve water use efficiency(WUE).In order to devel...The Northeast Plain is the largest maize production area in China,and drip irrigation has recently been proposed to cope with the effects of frequent droughts and to improve water use efficiency(WUE).In order to develop an efficient and environmentally friendly irrigation system,drip irrigation experiments were conducted in 2016-2018 incorporating different soil water conservation measures as follows:(1)drip irrigation under plastic film mulch(PI),(2)drip irrigation under biodegradable film mulch(BI),(3)drip irrigation incorporating straw returning(SI),and(4)drip irrigation with the tape buried at a shallow soil depth(OI);with furrow irrigation(FI)used as the control.The results showed that PI and Bl gave the highest maize yield,as well as the highest WUE and nitrogen use efficiency(NUE)because of the higher root length density(RLD)and better heat conditions during the vegetative stage.But compared with BI,PI consumed more soil water in the 20-60 and 60-100 cm soil layers,and accelerated the progress of root and leaf senescence due to a larger root system in the top 0-20 cm soil layer and a higher soil temperature during the reproductive stage.SI was effective in improving soil water and nitrate contents,and promoted RLD in deeper soil layers,thereby maintaining higher physiological activity during the reproductive stage.FI resulted in higher nitrate levels in the deep 60-100 cm soil layer,which increased the risk of nitrogen losses by leaching compared with the drip irrigation treatments.RLD in the 0-20 cm soil layer was highly positively correlated with yield,WUE and NUE(P<0.001),but it was negatively correlated with root nitrogen use efficiency(NRE)(P<0.05),and the correlation was weaker in deeper soil layers.We concluded that Bl had advantages in water-nitrogen utilization and yield stability response to drought stress,and thus is recommended for environmentally friendly and sustainable maize production in Northeast China.展开更多
Soybean is one of the major oil seed crops,which is usually intercropped with other crops to increase soybean production area and yield.However,soybean is highly sensitive to shading.It is unclear if soybean morpholog...Soybean is one of the major oil seed crops,which is usually intercropped with other crops to increase soybean production area and yield.However,soybean is highly sensitive to shading.It is unclear if soybean morphology responds to shading(i.e.,shade tolerance or avoidance)and which features may be suitable as screening materials in relay strip intercropping.Therefore,in this study,various agronomic characteristics of different soybean genotypes were analyzed under relay intercropping conditions.The soybean materials used in this study exhibited genetic diversity,and the coefficient of variations of the agronomic parameters ranged from 13.84 to 72.08%during the shade period and from 6.44 to 52.49%during the maturity period.The ratios of shading to full irradiance in stem mass fraction(SMF)were almost greater than 1,whereas opposite results were found in the leaves.Compared with full irradiance,the average stem length(SL),leaf area ratio(LAR)and specific leaf area(SLA)for the two years(2013 and 2014)increased by 0.78,0.47 and 0.65 under shady conditions,respectively.However,the stem diameter(SD),total biomass(TB),leaf area(LA),number of nodes(NN)on the main stem,and number of branches(BN)all decreased.During the shady period,the SL and SMF exhibited a significant negative correlation with yield,and the SD exhibited a significant positive correlation with yield.The correlation between the soybean yield and agronomic parameters during the mature period,except for SL,the first pod height(FPH),100-seed weight(100-SW),and reproductive growth period(RGP),were significant(P〈0.01),especially for seed weight per branch(SWB),pods per plant(PP),BN,and vegetative growth period(VGP).These results provide an insight into screening the shade tolerance of soybean varieties and can be useful in targeted breeding programs of relay intercropped soybeans.展开更多
Rice panicle apical abortion(PAA)is a detrimental agronomic trait resulting in spikelet number reduction and yield loss.To understand its underlying molecular mechanism,we identified one recessive PAA mutant tutou2 fr...Rice panicle apical abortion(PAA)is a detrimental agronomic trait resulting in spikelet number reduction and yield loss.To understand its underlying molecular mechanism,we identified one recessive PAA mutant tutou2 from the offspring of tissue cultures.The mutation locus was finely mapped to a 75-kb interval on the long arm of chromosome 10.Sequence analysis revealed a single nucleotide substitution of A to T at the 941 position of LOC_Os10g31910 in tutou2,resulting in an amino acid change from isoleucine to phenylalanine.Complementation analysis showed that the degenerated panicle phenotype in tutou2 was rescued in the transgenic lines.A phenotype similar to tutou2 can also be obtained by LOC_Os10g31910 knockout in wild-type rice.These results suggested that LOC_Os10 g31910 is the causative locus TUTOU2 responsible for the tutou2 PAA phenotype and probably also the locus of DEL1,previously documented as a leaf senescence gene.The significant phenotypic differences between del1 and tutou2 suggest that the locus DEL1/TUTOU2 plays roles in both leaf and panicle development which were not considered fully in previous studies.展开更多
Doubled haploid(DH) technology is important in modern maize breeding. Haploid inducers determine the efficiency of both haploid induction and identification. It has taken decades to improve the efficiency,haploid indu...Doubled haploid(DH) technology is important in modern maize breeding. Haploid inducers determine the efficiency of both haploid induction and identification. It has taken decades to improve the efficiency,haploid induction rate(HIR), from the ~2% of the ancestor haploid inducer, stock6, to the ~10% of modern haploid inducers. Improvement of kernel oil content(KOC) would further enhance haploid identification efficiency. Using molecular marker-assisted selection, in combine with the number of haploids per ear as phenotypic criterion, we developed a new high-oil haploid inducer line, CHOI4, with a mean HIR of 15.8%and mean KOC of 11%. High KOC of CHOI4 can achieve a mean accuracy greater than 90% in identification of haploids of different backgrounds, with reduced false discovery rates and false negative rates in comparison with the previous high-oil haploid inducer line, CHOI3. Comparison of phenotypic selection strategies suggested that the number of haploids per ear can be used as a phenotyping criterion during haploid inducer line development. CHOI4 could further increase the efficiency of large-scale DH breeding programs with lower cost.展开更多
The OVATE gene was initially identified in tomato and serves as a key regulator of fruit shape.There are 31 OFP members in the tomato genome.However,their roles in tomato growth and reproductive development are largel...The OVATE gene was initially identified in tomato and serves as a key regulator of fruit shape.There are 31 OFP members in the tomato genome.However,their roles in tomato growth and reproductive development are largely unknown.Here,we cloned the OFP transcription factor SlOFP20.Tomato plants overexpressing SlOFP20 displayed several phenotypic defects,including an altered floral architecture and fruit shape and reduced male fertility.SlOFP20 overexpression altered the expression levels of some brassinosteroid(BR)-associated genes,implying that SlOFP20 may play a negative role in the BR response,similar to its ortholog OsOFP19 in rice.Moreover,the transcript accumulation of gibberellin(GA)-related genes was significantly affected in the transgenic lines.SlOFP20 may play an important role in the crosstalk between BR and GA.The pollen germination assay suggested that the pollen germination rate of SlOFP20-OE plants was distinctly lower than that of WT plants.In addition,the tomato pollen-associated genes SlCRK1,SlPMEI,LePRK3,SlPRALF,and LAT52 were all suppressed in the transgenic lines.Our data imply that SlOFP20 may affect floral organ and pollen development by modulating BR and GA signaling in tomato.展开更多
This article discusses the overwintering ability and genetic variation of the main agronomic traits in a new germplasm resource, glutinous rice 89-1. Survival rates of overwintering axillary buds and stems were observ...This article discusses the overwintering ability and genetic variation of the main agronomic traits in a new germplasm resource, glutinous rice 89-1. Survival rates of overwintering axillary buds and stems were observed in different altitudes. The F1, backcross F1 and F2 populations were constructed from sexual crossing between glutinous rice 89-1 and Hongmangnuo, Fuhui 838, Minghui 63, Ce 64. The overwintering ability and genetic variation of the main agronomic traits were analyzed in different seasons. Results showed that glutinous rice 89-1 could overwinter by axillary buds in low temperatures at different altitudes. Axillary buds would ratoon in the following year. The survival rates of rice stem and axillary buds were 82.6 and 29%, respectively. The grain yields were 6 291.0 kg ha^-1 in the overwintering ratooning season, and corresponded in the main season. Genetic analysis and chi-square test showed that the overwintering ability of glutinous rice 89-1 was likely controlled by polygene, and heritabilities showed diversity in different hybrid combinations. The highest heritabilities of 1 000-grain weight and plant height were in the main crop season, whereas the lowest were in the overwintering season, and the heritabilities of grain numbers per panicle and the seed setting rate reached the highest in the ratooning season. The spikelets per panicle, the seed setting rate, the 1 000-grain weight, the plant height, and the spikelet length had nearly normal distribution in F2 populations of glutinous rice 89-1/Minghui 63, but the seed setting rate had bimodal distribution. Overwintering glutinous rice 89-1 was a useful new genetic germplasm resource.展开更多
Persistent tapetal cell1(PTC1) plays a curial role in pollen development, and is thought to function as a transcriptional activator in rice. However, the molecular mechanism of PTC1 in regulating pollen development an...Persistent tapetal cell1(PTC1) plays a curial role in pollen development, and is thought to function as a transcriptional activator in rice. However, the molecular mechanism of PTC1 in regulating pollen development and its cis-elements are not well understood. We identified a novel weak male sterility mutant(ms92) which exhibited expanded tapetum and shrink pollen grains. Map-based cloning and allelic analysis suggested that the male sterility of ms92 was caused by a DNA fragment substitution in the promoter of PTC1. The decreased expression of MS92/PTC1 in ms92 and cis-element analysis indicated that the substituted sequence contained several potential binding cis-element of negative feedback. MS92/PTC1 was specifically expressed in tapetum and microspores at the young microspore stage, and its protein was localized in nucleus. We further found that MS92/PTC1 functions as a transcription activator by recognizing H3K4me3. Transcriptomic analysis revealed that a number of genes involved in tapetum degeneration and pollen wall formation were down-regulated in ms92, which are the potential targets of MS92/PTC1. The substitution fragment in MS92/PTC1 promoter was essential for pollen development, and we provided a novel mutant for further identifying the cis-elements in promoter and the molecular network of MS92/PTC1.展开更多
Locusts have caused periodic disasters in the recorded history of humankind.Up to now,locust disaster is still the biggest threat to the world’s agricultural production.The desert locust Schistocerca gregaria is one ...Locusts have caused periodic disasters in the recorded history of humankind.Up to now,locust disaster is still the biggest threat to the world’s agricultural production.The desert locust Schistocerca gregaria is one of the most harmful locusts,which has caused massive food crises,economic losses,and ecological disasters.The desert locust is a migratory insect pest that occurs year-round in the tropic and subtropical regions.Under the wind and seasonal alternation,it moves and flies in the African continent and West Asia.Desert locust damages the stems and leaves of more than 300 plants,including Gramineae,Tribulus terrestris,and Euphorbiaceae.Locusts cause devastating disasters to local plants,especially field crops,and significantly threaten food security.To date,voluminous research has been conducted regarding the ecology and management of desert locusts.This review represents an effort to summarize the basic information on the biology and ecology,distribution,damage,and economic impact of desert locusts,examine the recent developments in integrated locust management,and make recommendations for future research.展开更多
Fertile topsoil was added onto the surface of barren slope land in Three Gorges Reservoir region of China in an anthropogenic process known as the foreign soil reconstruction project. The main goal of this paper was t...Fertile topsoil was added onto the surface of barren slope land in Three Gorges Reservoir region of China in an anthropogenic process known as the foreign soil reconstruction project. The main goal of this paper was to reveal the influence of anthropogenic activities on pedogenic processes and soil classifications. Chemical weathering indices and comparative analysis were applied to discuss changes in geochemical compositions and weathering features of purplish soils(Cambisols) before and after the project. Results showed that:(1) The foreign soil reconstruction project slightly altered the major element composition of topsoil and improved the soil structure. Although the distributions of major elements in the original topsoil, original subsoil, foreign topsoil and newly constructed topsoil were all similar to that in upper continental crust, newly constructed topsoil was the most similar soil.(2) The chemical index of alteration was more sensitive than the weathering index of Parker at indicating chemical weathering status of purplish soil. The chemical weathering status of newly constructed topsoil was higher than that of the original topsoil and lower than that of foreign topsoil.(3) Anthropogenic activities may provide a promising new thought for the anthropogenic soil classification system. The scope and subgroups of Anthrosols should be extended and strengthened. Or there may be a need to combine Anthrosols and Technosols orders to create a new soil order. The results may be used for optimizing soil mellowing engineering activities and enriching the soil classification system.展开更多
The dielectric properties between in-particle/water interface and bulk solution are significantly different,which are ignored in the theories of surface potential estimation.The analytical expressions of surface poten...The dielectric properties between in-particle/water interface and bulk solution are significantly different,which are ignored in the theories of surface potential estimation.The analytical expressions of surface potential considering the dielectric saturation were derived in mixed electrolytes based on the nonlinear Poisson-Boltzmann equation.The surface potentials calculated from the approximate analytical and exact numerical solutions agreed with each other for a wide range of surface charge densities and ion concentrations.The effects of dielectric saturation became important for surface charge densities larger than 0.30 C/m^2.The analytical models of surface potential in different mixed electrolytes were valid based on original Poisson-Boltzmann equation for surface charge densities smaller than 0.30 C/m^2.The analytical model of surface potential considering the dielectric saturation for low surface charge density can return to the result of classical Poisson-Boltzmann theory.The obtained surface potential in this study can correctly predict the adsorption selectivity between monovalent and bivalent counterions.展开更多
[Objective] The study aimed at selecting the predominant strains being able to degrade kerosene and studying its best growth conditions. [Method] Choosing kerosene as the only carbon source, we selected and separated ...[Objective] The study aimed at selecting the predominant strains being able to degrade kerosene and studying its best growth conditions. [Method] Choosing kerosene as the only carbon source, we selected and separated the predominant strains being able to degrade kerosene from the contaminated soil near petrochemical plants, and then optimized the grow conditions of the bacteria. [Result] The best conditions for the bacteria growth were determined as follows, that is, temperature was 30 ℃, pH=7, salinity was 2.5%, and the rotational speed of the thermostatic shake was 190 r/min. Under the optimal conditions, the degradation rate of kerosene by the bacteria cultured for three days reached 42.6%. [Conclusion] The research could provide scientific references for the restoration of polluted soil by kerosene.展开更多
The mung bean variety Ji Heilv No.12 was bred by Institute of Characteristic Crop Research, Chongqing Academy of Agricultural Sciences and Institute of Food and Oil Crops, Hebei Academy of Agricultural and Forestry Sc...The mung bean variety Ji Heilv No.12 was bred by Institute of Characteristic Crop Research, Chongqing Academy of Agricultural Sciences and Institute of Food and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences. using Jilv 9and Jilv 7 as female and male parent respectively,with pedigree method. Ji Heilv No.12 is a new variety with features of high and stable yield,broad adaptability and strong resistance in yield trails during 2011-2012; it was approved and released by Chongqing Provincial Committee of Crop Variety Identification in 2012,suitable for cultivating in most area of Chongqing.展开更多
基金supported by the Performance Incentive and Guidance Project for Scientific Research Institutions,China(cstc2022jxjl80028)the General Project of Chongqing Natural Science Foundation,China(cstc2021jcyj-msxmX0747)+2 种基金the Youth Innovation Team Project of Chongqing Academy of Agricultural Sciences,China(NKY-2018QC02)the Jiangjin Experimental Station of National Germplasm Resources Observation,China(NAES025GR05)the Chongqing Technical Innovation and Application Development Special Project,China(CSTB2022T1AD-KPX0008).
文摘Heat stress is a major constraint to current and future maize production at the global scale.Male and female reproductive organs both play major roles in increasing seed set under heat stress at flowering,but their relative contributions to seed set are unclear.In this study,a 2-year field experiment including three sowing dates in each year and 20 inbred lines was conducted.Seed set,kernel number per ear,and grain yield were all reduced by more than 80%in the third sowing dates compared to the first sowing dates.Pollen viability,silk emergence ratio,and anthesis-silking interval were the key determinants of seed set under heat stress;and their correlation coefficients were 0.89^(***),0.65^(***),and-0.72^(***),respectively.Vapor pressure deficit(VPD)and relative air humidity(RH)both had significant correlations with pollen viability and the silk emergence ratio.High RH can alleviate the impacts of heat on maize seed set by maintaining high pollen viability and a high silk emergence ratio.Under a warming climate from 2020 to 2050,VPD will decrease due to the increased RH.Based on their pollen viability and silk emergence ratios,the 20 genotypes fell into four different groups.The group with high pollen viability and a high silk emergence ratio performed better under heat stress,and their performance can be further improved by combining the improved flowering pattern traits.
基金financially supported by the National Key Research and Development Program of China(2022YFD190160304)Natural Science Foundation of Sichuan Province(2022NSFSC0013)+1 种基金Sichuan Maize Innovation Team Construction Project(SCCXTD-2022-02)National Key Research and Development Program of China(2018YFD0301206)。
文摘Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the activities of Chl a-degrading enzymes after silking,and the post-silking dry matter accumulation and grain yield under multiple planting densities and N fertilization rates.The dynamic change of GLA_(ear)after silking fitted to the logistic model,and the GLA_(ear) duration and the GLAearat 42 d after silking were affected mainly by the duration of the initial senescence period(T_(1))which was a key factor of the leaf senescence.The average chlorophyllase(CLH)activity was 8.3 times higher than pheophytinase activity and contributed most to the Chl content,indicating that CLH is a key enzyme for degrading Chl a in maize.Increasing density increased the CLH activity and decreased the Chl content,T1,GLAear,and GLA_(ear) duration.Under high density,appropriate N application reduced CLH activity,increased Chl content,prolonged T1,alleviated high-density-induced leaf senescence,and increased post-silking dry matter accumulation and grain yield.
基金the National Key R&D Program of China(2022YFD1400500)the earmarked fund for China Agriculture Research System(CARS-34)the Central Public-interest Scientific Institution Basal Research Fund of China(S2022XM21)。
文摘Tyrosine phosphorylation is crucial for controlling normal cell growth,survival,intercellular communication,gene transcription,immune responses,and other processes.protein tyrosine phosphatase(PTP)and protein tyrosine kinases(PTK)can achieve this goal by regulating multiple signaling pathways.Oedaleus decorus asiaticus is an important pest that infests the Mongolian Plateau grassland.We aimed to evaluate the survival rate,growth rate,overall performance,and ovarian developmental morphology of the 4th instar nymphs of O.decorus asiaticus while inhibiting the activity of protein tyrosine phosphatase-1B(PTP1B)and PTK.In addition,the expression and protein phosphorylation levels of key genes in the MAPK signaling pathway and antioxidant enzyme activity were assessed.The results showed no significant differences in survival rate,growth rate,or overall performance between PTP1B inhibitor treatment and control.However,after PTK inhibitor treatment,these indexes were significantly lower than those in the control.The ovarian size of female larvae after 15 days of treatment with PTK inhibitors showed significantly slower development,while female larvae treated with PTP1B exhibited faster ovarian growth than the control group.In comparison to controls and nymphs treated with PTK inhibitors,the expression and phosphorylation levels of key genes in the MAPK signaling pathway under PTP1B inhibitor treatments were significantly higher in 4th instar nymphs.However,reactiveoxygen(ROS)species levels and the activities of NADPH oxidase and other antioxidant enzymes were considerably reduced,although they were significantly greater in the PTK inhibitor treatment.The results suggest that PTP1B and PTK feedback inhibition in the mitogen-activated-protein kinases(MAPK)signal transfer can regulate the physiological metabolism of the insect as well as its developmental rate.These findings can facilitate future uses of PTP1B and PTK inhibitors in controlling insect development to help control pest populations.
基金supported by the China Agriculture Research System of MOF and MARA(CARS-08)the National Crop Germplasm Resources Center of China(NCGRC-2020-09)the Scientific Innovation Program of the Chinese Academy of Agricultural Sciences。
文摘White mold of pea caused by Sclerotinia sclerotiorum is a common disease in China.However,we discovered that the diverse Sclerotinia species could cause white mold on pea plants in Chongqing and Sichuan of China during recent disease surveys.Thus,the objective of this study was to confirm the causal agents from diseased pea plants.The obtained isolates of white mold from Chongqing and Sichuan were identified by morphological characters and molecular characterization to determine the pathogen species,and their pathogenicity was confirmed on pea through completing Koch’s postulates.Fungal isolates of Sclerotinia-like were obtained from diseased plants or sclerotia.Based on morphological characteristics and molecular characterization,30 isolates were identified to three species,six isolates as S.minor,seven as S.sclerotiorum,and 17 as S.trifoliorum.In pathogenicity tests on pea cultivars Zhongwan 4 and Longwan 1,all 30 isolates caused typical symptoms of white mold on the inoculated plants,and the inoculated pathogens were re-isolated from the diseased plants.This study confirmed that white mold of pea was caused by three Sclerotinia species,S.sclerotiorum,S.minor and S.trifoliorum in Chongqing and Sichuan.It is the first report that S.minor and S.trifoliorum cause white mold of pea in Southwest China.
基金Supported by csct2012jj A80042cstc2013yykfc80002+5 种基金Ycstc,2013ac1001Ycstc,2014ac1010Ycstc,2014nc1004201303129CARS-09Construction of Mutant Bank of "Tongcanxian No.8" Induced by EMS
文摘The research analyzed the theoretical basis of the sustainable development of the Chongqing lava bean in terms of the current market economy situation. In regard to practice, several strategies will be suggested for the Chongqing fava bean industry to guide the development of Chongqing's efficient fava bean agriculture.
基金Supported by Science and Technology Service Platform Project of Chongqing Science and Technology Commission(cstc2015ptfw-ggfw80001)Agricultural Development Project of Chongqing Academy of Agricultural Sciences(Research and Demonstration of the Key Technology in Adjusting Corn Planting Structure)Soft Science Project of Jiulongpo District Science and Technology Commission in Chongqing Municipality(Study on the Industrialization Layout and Development Strategy of Grain Reform in Chongqing)
文摘With the development of society and economy and increasing awareness of people's diet and health care,the demand for waxy corn and its processed products has been rising. At present,the planting of waxy corn in Chongqing is taking shape,but the waxy corn processing is still in the initial stage with smaller enterprise scale and fewer processing product variety. Based on the analysis of the development advantages and disadvantages of waxy corn processing industry in Chongqing,this paper brings forward the development ideas and strategies of Chongqing waxy corn processing industry from three aspects of production,processing and policy.
基金jointly supported by the Key Research and Development Plan of Jiangsu Province,China (Grant No. BE2020318-2)the National Natural Science Foundation of China (Grant No. U19A2026)。
文摘Zinc(Zn) is an essential trace mineral that is required for plant growth and development. A number of protein transporters, which are involved in Zn uptake, translocation and distribution, are finely regulated to maintain Zn homeostasis in plant. In this study, we functionally characterized an ATP-binding cassette(ABC) transporter gene, OsPDR7, which is involved in Zn homeostasis. Os PDR7 encodes a plasma membrane-localized protein that is expressed mainly in the exodermis and xylem in the rice root.ospdr7 mutants resulted in higher Zn accumulation compared with the wild type. Heterogeneous expression of OsPDR7 in a yeast mutant rescued the Zn-deficiency phenotype, implying transport activity of OsPDR7 to Zn in yeast. However, no ZIP genes except for OsZIP9 showed change in expression profile in the ospdr7 mutants, which suggested that OsPDR7 maintains cellular Zn homeostasis through regulating Os ZIP9 expression. RNA-Seq analysis further revealed a set of differentially expressed genes between the wild type and ospdr7 mutants that allowed us to propose a possible OsPDR7-associated signaling network involving transporters, hormone responsive genes, and transcription factors. Our results revealed a novel transporter involved in the regulation of Zn homeostasis and will pave the way toward a better understanding of the fine-tuning of gene expression in the network of transporter genes.
基金supported by the Chongqing Academy of Agricultural Sciences Youth Innovation Team Project(NKY-2018QC01)Chongqing Finance Special Project(NKY-2022AC002)+2 种基金the Natural Science Foundation Project of Yongchuan(2021yc-jckx20013)the Technology Innovation and Application Development(Surface)Project of Yongchuan(2021yc-cxfz30007)the National Oilseed Rape Industrial Technology System Sanxia Comprehensive Experiment Station Project(CARS-13).
文摘Gibberellin 2-oxidases(GA2ox)are important enzymes that maintain the balance of bioactive GAs in plants.GA2ox genes have been identified and characterized in many plants,but these genes were not investigated in Brassica napus.Here,we identified 31 GA2ox genes in B.napus and 15 of these BnaGA2ox genes were distributed in the A and C subgenomes.Subcellular localization predictions suggested that all BnaGA2ox proteins were localized in the cytoplasm,and gene structure analysis showed that the BnaGA2ox genes contained 2–4 exons.Phylogenetic analysis indicated that BnGA2ox family proteins in monocotyledons and dicotyledons can be divided into four groups,including two C_(19)-GA2ox and two C_(20)-GA2ox clades.Group 4 is a C_(20)-GA2ox Class discovered recently.Most BnaGA2ox genes had a syntenic relationship with AtGA2ox genes.BnaGA2ox genes in the C subgenome had experienced stronger selection pressure than genes in the A subgenome.BnaGA2ox genes were highly expressed in specific tissues such as those involved in growth and development,and most of them were mainly involved in abiotic responses,regulation of phytohormones and growth and development.Our study provided a valuable evolutionary analysis of GA2ox genes in monocotyledons and dicotyledons,as well as an insight into the biological functions of GA2ox family genes in B.napus.
基金the National Key Research and Development Program of China(2016YFD0300103)the Science and Technology Project of Education Department of Jiangxi Province,China(GJJ190933)+2 种基金the Jiangxi Youth Science Foundation Project,China(20202BABL215003)the Innovation Engineering Plan Project of Jilin Province,China(CXGC2018ZY019)the Chongqing Science and Technology Commission Project,China(cstc2018jxjl80008).
文摘The Northeast Plain is the largest maize production area in China,and drip irrigation has recently been proposed to cope with the effects of frequent droughts and to improve water use efficiency(WUE).In order to develop an efficient and environmentally friendly irrigation system,drip irrigation experiments were conducted in 2016-2018 incorporating different soil water conservation measures as follows:(1)drip irrigation under plastic film mulch(PI),(2)drip irrigation under biodegradable film mulch(BI),(3)drip irrigation incorporating straw returning(SI),and(4)drip irrigation with the tape buried at a shallow soil depth(OI);with furrow irrigation(FI)used as the control.The results showed that PI and Bl gave the highest maize yield,as well as the highest WUE and nitrogen use efficiency(NUE)because of the higher root length density(RLD)and better heat conditions during the vegetative stage.But compared with BI,PI consumed more soil water in the 20-60 and 60-100 cm soil layers,and accelerated the progress of root and leaf senescence due to a larger root system in the top 0-20 cm soil layer and a higher soil temperature during the reproductive stage.SI was effective in improving soil water and nitrate contents,and promoted RLD in deeper soil layers,thereby maintaining higher physiological activity during the reproductive stage.FI resulted in higher nitrate levels in the deep 60-100 cm soil layer,which increased the risk of nitrogen losses by leaching compared with the drip irrigation treatments.RLD in the 0-20 cm soil layer was highly positively correlated with yield,WUE and NUE(P<0.001),but it was negatively correlated with root nitrogen use efficiency(NRE)(P<0.05),and the correlation was weaker in deeper soil layers.We concluded that Bl had advantages in water-nitrogen utilization and yield stability response to drought stress,and thus is recommended for environmentally friendly and sustainable maize production in Northeast China.
基金supported by the National Natural Science Foundation of China (31571615)the National Key Research and Development Program of China (2016YFD0300602, 2016YFD0300209)+1 种基金the Major Project of Education Department in Sichuan, China (16ZA0041)the earmarked fund for China Agriculture Research System, China (CARS-04-PS19)
文摘Soybean is one of the major oil seed crops,which is usually intercropped with other crops to increase soybean production area and yield.However,soybean is highly sensitive to shading.It is unclear if soybean morphology responds to shading(i.e.,shade tolerance or avoidance)and which features may be suitable as screening materials in relay strip intercropping.Therefore,in this study,various agronomic characteristics of different soybean genotypes were analyzed under relay intercropping conditions.The soybean materials used in this study exhibited genetic diversity,and the coefficient of variations of the agronomic parameters ranged from 13.84 to 72.08%during the shade period and from 6.44 to 52.49%during the maturity period.The ratios of shading to full irradiance in stem mass fraction(SMF)were almost greater than 1,whereas opposite results were found in the leaves.Compared with full irradiance,the average stem length(SL),leaf area ratio(LAR)and specific leaf area(SLA)for the two years(2013 and 2014)increased by 0.78,0.47 and 0.65 under shady conditions,respectively.However,the stem diameter(SD),total biomass(TB),leaf area(LA),number of nodes(NN)on the main stem,and number of branches(BN)all decreased.During the shady period,the SL and SMF exhibited a significant negative correlation with yield,and the SD exhibited a significant positive correlation with yield.The correlation between the soybean yield and agronomic parameters during the mature period,except for SL,the first pod height(FPH),100-seed weight(100-SW),and reproductive growth period(RGP),were significant(P〈0.01),especially for seed weight per branch(SWB),pods per plant(PP),BN,and vegetative growth period(VGP).These results provide an insight into screening the shade tolerance of soybean varieties and can be useful in targeted breeding programs of relay intercropped soybeans.
基金supported by grants from the National Transgenic Science and Technology Program,China(2016ZX08009003-003)the National Key Research and Development Program of China(2016YFD0101100)+1 种基金the Youth Innovation Team Program of Chongqing Academy of Agricultural Sciences,China(NKY-2018QC03)the National Natural Science Foundation of China(31960401)。
文摘Rice panicle apical abortion(PAA)is a detrimental agronomic trait resulting in spikelet number reduction and yield loss.To understand its underlying molecular mechanism,we identified one recessive PAA mutant tutou2 from the offspring of tissue cultures.The mutation locus was finely mapped to a 75-kb interval on the long arm of chromosome 10.Sequence analysis revealed a single nucleotide substitution of A to T at the 941 position of LOC_Os10g31910 in tutou2,resulting in an amino acid change from isoleucine to phenylalanine.Complementation analysis showed that the degenerated panicle phenotype in tutou2 was rescued in the transgenic lines.A phenotype similar to tutou2 can also be obtained by LOC_Os10g31910 knockout in wild-type rice.These results suggested that LOC_Os10 g31910 is the causative locus TUTOU2 responsible for the tutou2 PAA phenotype and probably also the locus of DEL1,previously documented as a leaf senescence gene.The significant phenotypic differences between del1 and tutou2 suggest that the locus DEL1/TUTOU2 plays roles in both leaf and panicle development which were not considered fully in previous studies.
基金supported by the National Key Research and Development Program of China(2016YFD0101200)the China Agriculture Research System(CARS-02)+1 种基金2020 Research Program of Sanya Yazhou Bay Science and Technology City(SKJC-2020-02-03)the National Natural Science Foundation of China(91935303,32001554)。
文摘Doubled haploid(DH) technology is important in modern maize breeding. Haploid inducers determine the efficiency of both haploid induction and identification. It has taken decades to improve the efficiency,haploid induction rate(HIR), from the ~2% of the ancestor haploid inducer, stock6, to the ~10% of modern haploid inducers. Improvement of kernel oil content(KOC) would further enhance haploid identification efficiency. Using molecular marker-assisted selection, in combine with the number of haploids per ear as phenotypic criterion, we developed a new high-oil haploid inducer line, CHOI4, with a mean HIR of 15.8%and mean KOC of 11%. High KOC of CHOI4 can achieve a mean accuracy greater than 90% in identification of haploids of different backgrounds, with reduced false discovery rates and false negative rates in comparison with the previous high-oil haploid inducer line, CHOI3. Comparison of phenotypic selection strategies suggested that the number of haploids per ear can be used as a phenotyping criterion during haploid inducer line development. CHOI4 could further increase the efficiency of large-scale DH breeding programs with lower cost.
基金supported by the National Natural Science Foundation of China(no.31572129)the Technology System of National Bulk Vegetable Industry-Eggplant Breeding Position(CARS-25-A-06).
文摘The OVATE gene was initially identified in tomato and serves as a key regulator of fruit shape.There are 31 OFP members in the tomato genome.However,their roles in tomato growth and reproductive development are largely unknown.Here,we cloned the OFP transcription factor SlOFP20.Tomato plants overexpressing SlOFP20 displayed several phenotypic defects,including an altered floral architecture and fruit shape and reduced male fertility.SlOFP20 overexpression altered the expression levels of some brassinosteroid(BR)-associated genes,implying that SlOFP20 may play a negative role in the BR response,similar to its ortholog OsOFP19 in rice.Moreover,the transcript accumulation of gibberellin(GA)-related genes was significantly affected in the transgenic lines.SlOFP20 may play an important role in the crosstalk between BR and GA.The pollen germination assay suggested that the pollen germination rate of SlOFP20-OE plants was distinctly lower than that of WT plants.In addition,the tomato pollen-associated genes SlCRK1,SlPMEI,LePRK3,SlPRALF,and LAT52 were all suppressed in the transgenic lines.Our data imply that SlOFP20 may affect floral organ and pollen development by modulating BR and GA signaling in tomato.
文摘This article discusses the overwintering ability and genetic variation of the main agronomic traits in a new germplasm resource, glutinous rice 89-1. Survival rates of overwintering axillary buds and stems were observed in different altitudes. The F1, backcross F1 and F2 populations were constructed from sexual crossing between glutinous rice 89-1 and Hongmangnuo, Fuhui 838, Minghui 63, Ce 64. The overwintering ability and genetic variation of the main agronomic traits were analyzed in different seasons. Results showed that glutinous rice 89-1 could overwinter by axillary buds in low temperatures at different altitudes. Axillary buds would ratoon in the following year. The survival rates of rice stem and axillary buds were 82.6 and 29%, respectively. The grain yields were 6 291.0 kg ha^-1 in the overwintering ratooning season, and corresponded in the main season. Genetic analysis and chi-square test showed that the overwintering ability of glutinous rice 89-1 was likely controlled by polygene, and heritabilities showed diversity in different hybrid combinations. The highest heritabilities of 1 000-grain weight and plant height were in the main crop season, whereas the lowest were in the overwintering season, and the heritabilities of grain numbers per panicle and the seed setting rate reached the highest in the ratooning season. The spikelets per panicle, the seed setting rate, the 1 000-grain weight, the plant height, and the spikelet length had nearly normal distribution in F2 populations of glutinous rice 89-1/Minghui 63, but the seed setting rate had bimodal distribution. Overwintering glutinous rice 89-1 was a useful new genetic germplasm resource.
基金supported by the National Natural Science Foundation of China(Grant No.31301054)。
文摘Persistent tapetal cell1(PTC1) plays a curial role in pollen development, and is thought to function as a transcriptional activator in rice. However, the molecular mechanism of PTC1 in regulating pollen development and its cis-elements are not well understood. We identified a novel weak male sterility mutant(ms92) which exhibited expanded tapetum and shrink pollen grains. Map-based cloning and allelic analysis suggested that the male sterility of ms92 was caused by a DNA fragment substitution in the promoter of PTC1. The decreased expression of MS92/PTC1 in ms92 and cis-element analysis indicated that the substituted sequence contained several potential binding cis-element of negative feedback. MS92/PTC1 was specifically expressed in tapetum and microspores at the young microspore stage, and its protein was localized in nucleus. We further found that MS92/PTC1 functions as a transcription activator by recognizing H3K4me3. Transcriptomic analysis revealed that a number of genes involved in tapetum degeneration and pollen wall formation were down-regulated in ms92, which are the potential targets of MS92/PTC1. The substitution fragment in MS92/PTC1 promoter was essential for pollen development, and we provided a novel mutant for further identifying the cis-elements in promoter and the molecular network of MS92/PTC1.
基金the International Science&Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAASTIP)(CAAS-ZDRW202108)the China Agriculture Research System of MOF and MARA(CARS-34-07)the Special Funds for Basic Scientific Research of Chinese Academy of Agricultural Sciences(Y2020YJ02).
文摘Locusts have caused periodic disasters in the recorded history of humankind.Up to now,locust disaster is still the biggest threat to the world’s agricultural production.The desert locust Schistocerca gregaria is one of the most harmful locusts,which has caused massive food crises,economic losses,and ecological disasters.The desert locust is a migratory insect pest that occurs year-round in the tropic and subtropical regions.Under the wind and seasonal alternation,it moves and flies in the African continent and West Asia.Desert locust damages the stems and leaves of more than 300 plants,including Gramineae,Tribulus terrestris,and Euphorbiaceae.Locusts cause devastating disasters to local plants,especially field crops,and significantly threaten food security.To date,voluminous research has been conducted regarding the ecology and management of desert locusts.This review represents an effort to summarize the basic information on the biology and ecology,distribution,damage,and economic impact of desert locusts,examine the recent developments in integrated locust management,and make recommendations for future research.
基金the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAD05B06)
文摘Fertile topsoil was added onto the surface of barren slope land in Three Gorges Reservoir region of China in an anthropogenic process known as the foreign soil reconstruction project. The main goal of this paper was to reveal the influence of anthropogenic activities on pedogenic processes and soil classifications. Chemical weathering indices and comparative analysis were applied to discuss changes in geochemical compositions and weathering features of purplish soils(Cambisols) before and after the project. Results showed that:(1) The foreign soil reconstruction project slightly altered the major element composition of topsoil and improved the soil structure. Although the distributions of major elements in the original topsoil, original subsoil, foreign topsoil and newly constructed topsoil were all similar to that in upper continental crust, newly constructed topsoil was the most similar soil.(2) The chemical index of alteration was more sensitive than the weathering index of Parker at indicating chemical weathering status of purplish soil. The chemical weathering status of newly constructed topsoil was higher than that of the original topsoil and lower than that of foreign topsoil.(3) Anthropogenic activities may provide a promising new thought for the anthropogenic soil classification system. The scope and subgroups of Anthrosols should be extended and strengthened. Or there may be a need to combine Anthrosols and Technosols orders to create a new soil order. The results may be used for optimizing soil mellowing engineering activities and enriching the soil classification system.
基金supported by the National Natural Science Foundation of China(No.41877026)the Natural Science Foundation Project of CQ CSTC(cstc2018jcyj AX0318)the“Guangjiong”Project of Southwest University,China(201716)。
文摘The dielectric properties between in-particle/water interface and bulk solution are significantly different,which are ignored in the theories of surface potential estimation.The analytical expressions of surface potential considering the dielectric saturation were derived in mixed electrolytes based on the nonlinear Poisson-Boltzmann equation.The surface potentials calculated from the approximate analytical and exact numerical solutions agreed with each other for a wide range of surface charge densities and ion concentrations.The effects of dielectric saturation became important for surface charge densities larger than 0.30 C/m^2.The analytical models of surface potential in different mixed electrolytes were valid based on original Poisson-Boltzmann equation for surface charge densities smaller than 0.30 C/m^2.The analytical model of surface potential considering the dielectric saturation for low surface charge density can return to the result of classical Poisson-Boltzmann theory.The obtained surface potential in this study can correctly predict the adsorption selectivity between monovalent and bivalent counterions.
基金Supported by National Key Technology R&D Program of China (2010BAD03B01)
文摘[Objective] The study aimed at selecting the predominant strains being able to degrade kerosene and studying its best growth conditions. [Method] Choosing kerosene as the only carbon source, we selected and separated the predominant strains being able to degrade kerosene from the contaminated soil near petrochemical plants, and then optimized the grow conditions of the bacteria. [Result] The best conditions for the bacteria growth were determined as follows, that is, temperature was 30 ℃, pH=7, salinity was 2.5%, and the rotational speed of the thermostatic shake was 190 r/min. Under the optimal conditions, the degradation rate of kerosene by the bacteria cultured for three days reached 42.6%. [Conclusion] The research could provide scientific references for the restoration of polluted soil by kerosene.
基金Supported by Chongqing Science&Technology Commission(cstc2016shmszx80116csct2012jj A80042+5 种基金cstc2013yykfc800022015cstc-jbky-005072015cstc-jbky-00508)National Modern Agricultural Industry Technology System(CARS-09)Chongqing Finance Program(NKY-2016AB009NKY-2016AA002)
文摘The mung bean variety Ji Heilv No.12 was bred by Institute of Characteristic Crop Research, Chongqing Academy of Agricultural Sciences and Institute of Food and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences. using Jilv 9and Jilv 7 as female and male parent respectively,with pedigree method. Ji Heilv No.12 is a new variety with features of high and stable yield,broad adaptability and strong resistance in yield trails during 2011-2012; it was approved and released by Chongqing Provincial Committee of Crop Variety Identification in 2012,suitable for cultivating in most area of Chongqing.