期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Exploring reservoir computing:Implementation via double stochastic nanowire networks
1
作者 唐健峰 夏磊 +3 位作者 李广隶 付军 段书凯 王丽丹 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期572-582,共11页
Neuromorphic computing,inspired by the human brain,uses memristor devices for complex tasks.Recent studies show that self-organizing random nanowires can implement neuromorphic information processing,enabling data ana... Neuromorphic computing,inspired by the human brain,uses memristor devices for complex tasks.Recent studies show that self-organizing random nanowires can implement neuromorphic information processing,enabling data analysis.This paper presents a model based on these nanowire networks,with an improved conductance variation profile.We suggest using these networks for temporal information processing via a reservoir computing scheme and propose an efficient data encoding method using voltage pulses.The nanowire network layer generates dynamic behaviors for pulse voltages,allowing time series prediction analysis.Our experiment uses a double stochastic nanowire network architecture for processing multiple input signals,outperforming traditional reservoir computing in terms of fewer nodes,enriched dynamics and improved prediction accuracy.Experimental results confirm the high accuracy of this architecture on multiple real-time series datasets,making neuromorphic nanowire networks promising for physical implementation of reservoir computing. 展开更多
关键词 double-layer stochastic(DS)nanowire network architecture neuromorphic computation nanowire network reservoir computing time series prediction
下载PDF
A spintronic memristive circuit on the optimized RBF-MLP neural network 被引量:2
2
作者 葛源 李杰 +2 位作者 蒋文武 王丽丹 段书凯 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第11期272-283,共12页
A radial basis function network(RBF)has excellent generalization ability and approximation accuracy when its parameters are set appropriately.However,when relying only on traditional methods,it is difficult to obtain ... A radial basis function network(RBF)has excellent generalization ability and approximation accuracy when its parameters are set appropriately.However,when relying only on traditional methods,it is difficult to obtain optimal network parameters and construct a stable model as well.In view of this,a novel radial basis neural network(RBF-MLP)is proposed in this article.By connecting two networks to work cooperatively,the RBF’s parameters can be adjusted adaptively by the structure of the multi-layer perceptron(MLP)to realize the effect of the backpropagation updating error.Furthermore,a genetic algorithm is used to optimize the network’s hidden layer to confirm the optimal neurons(basis function)number automatically.In addition,a memristive circuit model is proposed to realize the neural network’s operation based on the characteristics of spin memristors.It is verified that the network can adaptively construct a network model with outstanding robustness and can stably achieve 98.33%accuracy in the processing of the Modified National Institute of Standards and Technology(MNIST)dataset classification task.The experimental results show that the method has considerable application value. 展开更多
关键词 radial basis function network(RBF) genetic algorithm spintronic memristor memristive circuit
下载PDF
Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
3
作者 蒋文武 李杰 +4 位作者 刘洪波 钱曦聪 葛源 王丽丹 段书凯 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期225-233,共9页
Spiking neural networks(SNNs) are widely used in many fields because they work closer to biological neurons.However,due to its computational complexity,many SNNs implementations are limited to computer programs.First,... Spiking neural networks(SNNs) are widely used in many fields because they work closer to biological neurons.However,due to its computational complexity,many SNNs implementations are limited to computer programs.First,this paper proposes a multi-synaptic circuit(MSC) based on memristor,which realizes the multi-synapse connection between neurons and the multi-delay transmission of pulse signals.The synapse circuit participates in the calculation of the network while transmitting the pulse signal,and completes the complex calculations on the software with hardware.Secondly,a new spiking neuron circuit based on the leaky integrate-and-fire(LIF) model is designed in this paper.The amplitude and width of the pulse emitted by the spiking neuron circuit can be adjusted as required.The combination of spiking neuron circuit and MSC forms the multi-synaptic spiking neuron(MSSN).The MSSN was simulated in PSPICE and the expected result was obtained,which verified the feasibility of the circuit.Finally,a small SNN was designed based on the mathematical model of MSSN.After the SNN is trained and optimized,it obtains a good accuracy in the classification of the IRIS-dataset,which verifies the practicability of the design in the network. 展开更多
关键词 MEMRISTOR multi-synaptic circuit spiking neuron spiking neural network(SNN)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部