期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Ca_v3.3-mediated endochondral ossification in a three-dimensional bioprinted Gel MA hydrogel
1
作者 Zhi Wang Xin Wang +6 位作者 Yang Huang Junjun Yang Zu Wan Zhenlan Fu Xiaoyuan Gong Guangxing Chen Liu Yang 《Bio-Design and Manufacturing》 SCIE EI CAS 2024年第6期983-999,共17页
The growth plate(GP)is a crucial tissue involved in skeleton development via endochondral ossification(EO).The bone organoid is a potential research model capable of simulating the physiological function,spatial struc... The growth plate(GP)is a crucial tissue involved in skeleton development via endochondral ossification(EO).The bone organoid is a potential research model capable of simulating the physiological function,spatial structure,and intercellular communication of native GPs.However,mimicking the EO process remains a key challenge for bone organoid research.To simulate this orderly mineralization process,we designed an in vitro sh Ca_(v)3.3 ATDC5-loaded gelatin methacryloyl(Gel MA)hydrogel model and evaluated its bioprintability for future organoid construction.In this paper,we report the first demonstration that the T-type voltage-dependent calcium channel(T-VDCC)subtype Ca_(v)3.3 is dominantly expressed in chondrocytes and is negatively correlated with the hypertrophic differentiation of chondrocytes during the EO process.Furthermore,Ca_(v)3.3 knockdown chondrocytes loaded with the Gel MA hydrogel successfully captured the EO process and provide a bioink capable of constructing layered and orderly mineralized GP organoids in the future.The results of this study could therefore provide a potential target for regulating the EO process and a novel strategy for simulating it in bone organoids. 展开更多
关键词 Bone organoid Endochondral ossification T-type voltage-dependent calcium channel(T-VDCC) Ca_(v)3.3 3D bioprinting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部