目的:建立同时测定麝香追风止痛膏中5种挥发性成分含量的方法。方法:采用气相色谱法,色谱柱为PEG-20M毛细管柱,检测器为氢火焰离子化检测器,载气为氮气(纯度:99.999%),柱流量为1.5 m L/min,吹扫流量为3.0 m L/min,分流比为5∶1,进样口...目的:建立同时测定麝香追风止痛膏中5种挥发性成分含量的方法。方法:采用气相色谱法,色谱柱为PEG-20M毛细管柱,检测器为氢火焰离子化检测器,载气为氮气(纯度:99.999%),柱流量为1.5 m L/min,吹扫流量为3.0 m L/min,分流比为5∶1,进样口温度为200℃,检测器温度为250℃,程序升温,进样量为2μL,尾吹流量为40 m L/min。结果:樟脑、龙脑、异龙脑、薄荷脑、水杨酸甲酯检测质量浓度线性范围分别为19.78~247.26μg/m L(r=0.999 6)、15.88~198.52μg/m L(r=0.999 9)、8.60~107.56μg/m L(r=0.999 9)、20.11~251.32μg/m L(r=0.999 8)、12.09~151.11μg/m L(r=0.999 3);定量限分别为329.68、264.69、143.41、335.09、402.96 ng/m L,检测限分别为98.90、79.41、43.02、100.53、120.89 ng/m L;中间精密度、稳定性、重复性试验的RSD均小于3%;加样回收率分别为97.85%~101.52%(RSD=1.54%,n=6)、99.55%~103.75%(RSD=1.38%,n=6)、98.88%~104.23%(RSD=1.94%,n=6)、98.11%~102.64%(RSD=1.92%,n=6)、96.55%~99.61%(RSD=1.44%,n=6);耐用性试验的RSD均小于3%。结论:该方法操作简便,精密度、稳定性、重复性、耐用性好,可用于麝香追风止痛膏中5种挥发性成分含量的同时测定。展开更多
Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme. In this paper, a non-fragile linear feedback control strategy with multipl...Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme. In this paper, a non-fragile linear feedback control strategy with multiplicative controller gain uncertainties is proposed for realizing the mixed-synchronization of Chua's circuits connected in a drive-response configuration. In particular, in the mixed-synchronization regime, different state variables of the response system can evolve into complete synchronization, anti-synchronization and even amplitude death simultaneously with the drive variables for an appropriate choice of scaling matrix. Using Lyapunov stability theory, we derive some sufficient criteria for achieving global mixed-synchronization. It is shown that the desired non-fragile state feedback controller can be constructed by solving a set of linear matrix inequalities (LMIs). Numerical simulations are also provided to demonstrate the effectiveness of the proposed control approach.展开更多
基金Project supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province of China(Grant No. LYM10074)the Natural Science Foundation of Guangdong Province,China (Grant No. 9451042001004076)
文摘Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme. In this paper, a non-fragile linear feedback control strategy with multiplicative controller gain uncertainties is proposed for realizing the mixed-synchronization of Chua's circuits connected in a drive-response configuration. In particular, in the mixed-synchronization regime, different state variables of the response system can evolve into complete synchronization, anti-synchronization and even amplitude death simultaneously with the drive variables for an appropriate choice of scaling matrix. Using Lyapunov stability theory, we derive some sufficient criteria for achieving global mixed-synchronization. It is shown that the desired non-fragile state feedback controller can be constructed by solving a set of linear matrix inequalities (LMIs). Numerical simulations are also provided to demonstrate the effectiveness of the proposed control approach.