Based on eddy covariance(EC) measurements during 2016–20, the effects of sky conditions on the net ecosystem productivity(NEP) over a subtropical “floating blanket ” wetland were investigated. Sky conditions were d...Based on eddy covariance(EC) measurements during 2016–20, the effects of sky conditions on the net ecosystem productivity(NEP) over a subtropical “floating blanket ” wetland were investigated. Sky conditions were divided into overcast, cloudy, and sunny conditions. On the half-hourly timescale, the daytime NEP responded more rapidly to the changes in the total photosynthetic active radiation(PARt) under overcast and cloudy skies than that under sunny skies. The increase in the apparent quantum yield under overcast and cloudy conditions was the greatest in spring and the least in summer. Additionally, lower atmospheric vapor pressure deficit(VPD) and moderate air temperature were more conducive to enhancing the apparent quantum yield under cloudy skies. On the daily timescale, NEP and the gross primary production(GPP) were higher under cloudy or sunny conditions than those under overcast conditions across seasons. The daily NEP and GPP during the wet season peaked under cloudy skies. The daily ecosystem light use efficiency(LUE) and water use efficiency(WUE) during the wet season also changed with sky conditions and reached their maximum under overcast and cloudy skies, respectively. The diffuse photosynthetic active radiation(PAR_d) and air temperature were primarily responsible for the variation of daily NEP from half-hourly to monthly timescales, and the direct photosynthetic active radiation(PAR_b) had a secondary effect on NEP. Under sunny conditions, PAR_b and air temperature were the dominant factors controlling daily NEP. While daily NEP was mainly controlled by PAR_d under cloudy and overcast conditions.展开更多
Composite radar reflectivity data during April-September 2011-2015 are used to investigate and classify storms in south China(18-27°N;105-120°E). The storms appear most frequently in May. They are either lin...Composite radar reflectivity data during April-September 2011-2015 are used to investigate and classify storms in south China(18-27°N;105-120°E). The storms appear most frequently in May. They are either linear;cellular or nonlinear systems, taking up 29.45%, 24.51% and 46.04%, respectively, in terms of morphology. Linear systems are subdivided into six morphologies: trailing stratiform precipitation(TS), bow echoes(BE), leading stratiform precipitation(LS), embedded line(EL), no stratiform precipitation(NS) and parallel stratiform precipitation(PS). The TS and NS modes have the highest frequencies but there are only small samples of LS(0.61%) and PS(0.79%) modes.Severe convective wind(≥17m s-1at surface level) accounts for the highest percentage(35%) of severe convective weather events produced by cellular systems including individual cells(IC) and clusters of cells(CC). Short-duration heavy rainfall(≥50 mm h-1) and severe convective wind are the most common severe weather associated with TS and BE modes. Comparison of environmental physical parameters shows that cellular convection systems tend to occur in the environment with favorable thermal condition, substantial unstable energy and low precipitable water from the surface to300 hPa(PWAT). However, the environmental conditions favoring the initiation of linear systems feature strong vertical wind shear, high PWAT, and intense convective inhibition. The environmental parameters favoring the initiation of nonlinear systems are between those of the other two types of morphology.展开更多
With the development of the integration of aviation safety and artificial intelligence,research on the combination of risk assessment and artificial intelligence is particularly important in the field of risk manageme...With the development of the integration of aviation safety and artificial intelligence,research on the combination of risk assessment and artificial intelligence is particularly important in the field of risk management,but searching for an efficient and accurate risk assessment algorithm has become a challenge for the civil aviation industry.Therefore,an improved risk assessment algorithm(PS-AE-LSTM)based on long short-term memory network(LSTM)with autoencoder(AE)is proposed for the various supervised deep learning algorithms in flight safety that cannot adequately address the problem of the quality on risk level labels.Firstly,based on the normal distribution characteristics of flight data,a probability severity(PS)model is established to enhance the quality of risk assessment labels.Secondly,autoencoder is introduced to reconstruct the flight parameter data to improve the data quality.Finally,utilizing the time-series nature of flight data,a long and short-termmemory network is used to classify the risk level and improve the accuracy of risk assessment.Thus,a risk assessment experimentwas conducted to analyze a fleet landing phase dataset using the PS-AE-LSTMalgorithm to assess the risk level associated with aircraft hard landing events.The results show that the proposed algorithm achieves an accuracy of 86.45%compared with seven baseline models and has excellent risk assessment capability.展开更多
The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate...The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate with each other to complete a search and rescue task.Secondly,a threat assessment method based on meteorological data was proposed,and potential meteorological threats,such as storms and rainfall,can be predicted by collecting and analyzing meteorological data.Finally,an experiment was carried out to evaluate the performance of the proposed method in different scenarios.The experimental results show that the coordinated search and rescue system of unmanned/manned aircraft can be used to effectively assess meteorological threats and provide accurate search and rescue guidance.展开更多
In order to promote the application and development of civil aviation safety(CAS)in the field of safety and enrich the theoretical system of CAS research,the methodology of CAS was studied.The definition of CAS was re...In order to promote the application and development of civil aviation safety(CAS)in the field of safety and enrich the theoretical system of CAS research,the methodology of CAS was studied.The definition of CAS was reconstructed,its connotation was explained from four aspects,and its research object was clarified.This paper discussed the mechanism of CAS,that is,to maintain system security through the establishment of safety prevention and control system(SPCS),and explained the research content of CAS from theory and technology application.Five principles and applicable methods for CAS research were summarized.In addition,it put forward the general procedure of CAS research,explained the specific content and implementation method or basis of each step.The research results show that the methodology of CAS is a systematic theoretical system with certain guiding significance,combined with the mechanism,research content,research principles and methods,and research procedures of CAS.展开更多
This paper study the feasibility of task-based teaching model in flight attendant oral English class in China. The problem of this research is to discuss why task-based teaching can be used in flight attendant oral En...This paper study the feasibility of task-based teaching model in flight attendant oral English class in China. The problem of this research is to discuss why task-based teaching can be used in flight attendant oral English class to improve students' oral English and its advantage. The research results shows that TBT makes language learningcloser tolearners' real life. However, the drawbacks manifests that the task-based methodplaces high requirements on teachers and students since it is more flexible and cooperative, which calls for high control from teachers and good collaboration from students.展开更多
We studied the states of rare earth elements in ore of the Xianglushan rare earth deposit. Rare earth ore samples were tested and examined by scanning electron microscope, electron probe, and chemical leaching. No ind...We studied the states of rare earth elements in ore of the Xianglushan rare earth deposit. Rare earth ore samples were tested and examined by scanning electron microscope, electron probe, and chemical leaching. No independent rare earth minerals were detected by scanning electron microscope. Elements detected by the electronic probe for the in situ micro-zone of the sample included: O,Al, Si, Ca, Mg, Fe, Ti, K, Na, S, Cl, C, Cu, Cr, V, and Pt.Rare earth elements were not detected by electron probe.(NH_4)_2 SO_4,(NH_4)Cl, NaCl, and H_2 SO_4 were used as reagents in chemical leaching experiments that easily leached out rare earth elements under the action of 10%reagent, indicating that the rare earth elements in ore are mainly in the ionic state rather than present as rare earth minerals.展开更多
By using the gauged rainfall in 160 stations within China's Mainland and the NCEP/NCAR reanalysis data, the impacts of anomalous SST in Kuroshio and its extension on precipitation in Northeast China were investiga...By using the gauged rainfall in 160 stations within China's Mainland and the NCEP/NCAR reanalysis data, the impacts of anomalous SST in Kuroshio and its extension on precipitation in Northeast China were investigated. The results show that a difference in the meridional circulation such as the East Asia/Pacific teleconnection pattern(EAP)may be responsible for the difference in rainfall between 1998 and 2010. In comparison with 1998, the anomalous meridional circulation pattern in 2010 shifted northeastward, and then the western subtropical high, the mid-latitudinal trough and the northeastern Asia blocking high also shifted northeastward, causing intensified convergence of the cold and warm air masses at the southern region and thus more rainfall in the southwestern region and less in the northwestern region. In 1998, the anomalous cyclone, one component of the meridional pattern, located at the Songhuajiang-Nengjiang River basin, resulted in more rainfall in the majority of the area. The results of observation and the model show that the difference in SSTA in Kuroshio and its extension under the background of different El Ni觡o events is the key point:(1) The anomalous warmth moved westward from the mid-Pacific to the east of the Philippine Sea during the central event, which led the heat resources shifting to the northeast in 2010; subsequently, a shift occurred to the north of the anomalous ascent and decent, followed by a warm SSTA in the region of Kuroshio's extension in 2010 and Kuroshio in 1998.(2) The warm SSTA in the Kuroshio extension causing the Rossby wave activity flux strengthened in 2010, and then the westerly jet shifted northward and extended eastward. A warm SSTA in Kuroshio and cold SSTA in its extension in 1998 caused the westerly jet to shift southward and weaken. As a result,the anomalous anticyclone and cyclone shifted northward in 2010, and the blocking high also shifted northward.展开更多
Previous studies emphasize the important role of a "north-ridge versus south-trough" dipole (affecting the latitudes from 20° to 75° N around the Tibetan Plateau) of anomalous geopotential height (...Previous studies emphasize the important role of a "north-ridge versus south-trough" dipole (affecting the latitudes from 20° to 75° N around the Tibetan Plateau) of anomalous geopotential height ( Z ) in the early-2008 abnormal cryogenic freezing-rain-and-snow events in the southern part of China. The present study intends to extract the leading signal facilitating the dipole based on the numerical outputs of a full Z-linear model for diagnosing the global Z . Using this model built on full primitive equations in spherical-isobaric coordinates, we can further split the anomaly of Z-Zfζ-uβ (representing the Z component not explicitly associated with the Coriolis parameter f and its meridional derivative β ) into 15 components. With the model-output Zfζ-uβ (mainly accounting for the dipole under the geostrophic balance) and Z-Zfζ-uβ matrices as the left and right singular vectors respectively, a maximum covariance analysis (MCA) is performed to extract the significant 2-4-day leading signal carried by the MCA Z-Zfζ-uβ mode in the upstream area of the dipole. This leading signal is mainly attributed to 1) the abnormally strong westerlies centered around the exit region of the Atlantic jet-stream and 2) the corresponding anomalous 950-300 hPa anticyclone to the south of the abnormally strong center of westerlies. The energy of the positive wave center around this jet exit region favors the downstream north-ridge while the energy of the negative wave center associated with the anomalous anticyclone favors the downstream south-trough.展开更多
The relationship between summer rainfall anomalies in northeast China and two types of El Ni?o events is investigated by using observation data and an atmospheric general circulation model(AGCM).It is shown that,for d...The relationship between summer rainfall anomalies in northeast China and two types of El Ni?o events is investigated by using observation data and an atmospheric general circulation model(AGCM).It is shown that,for different types of El Ni?o events,there is different rainfall anomaly pattern in the following summer.In the following year of a typical El Ni?o event,there are remarkable positive rainfall anomalies in the central-western region of northeast China,whereas the pattern of more rainfall in the south end and less rainfall in the north end of northeast China easily appears in an El Ni?o Modoki event.The reason for the distinct difference is that,associated with the different sea surface temperature anomalies(SSTA)along the equatorial Pacific,the large-scale circulation anomalies along east coast of East Asia shift northward in the following summer after El Ni?o Modoki events.Influenced by the anomalous anticyclone in Philippine Sea,southwesterly anomalies over eastern China strengthen summer monsoon and bring more water vapor to northeast China.Meanwhile,convergence and updraft is strengthened by the anomalous cyclone right in northeast China in typical El Ni?o events.These moisture and atmospheric circulation conditions are favorable for enhanced precipitation.However,because of the northward shift,the anomalous anticyclone in the Philippine Sea in typical El Ni?o cases shifts to the south of Japan in Modoki years,and the anomalous cyclone in northeast China in typical El Ni?o cases shifts to the north of northeast China,leading to the"dipole pattern"of rainfall anomalies.According to the results of numerical experiments,we further confirm that the tropical SSTA in different types of El Ni?o event can give rise to observed rainfall anomaly patterns in northeast China.展开更多
To enhance the accuracy of performance analysis of regional airline network,this study applies complex network theory and Density-Based Spatial Clustering of Applications with Noise(DBSCAN)algorithm to investigate the...To enhance the accuracy of performance analysis of regional airline network,this study applies complex network theory and Density-Based Spatial Clustering of Applications with Noise(DBSCAN)algorithm to investigate the topology of regional airline network,constructs node importance index system,and clusters 161 airport nodes of regional airline network.Besides,entropy power method and approximating ideal solution method(TOPSIS)is applied to comprehensively evaluate the importance of airport nodes and complete the classification of nodes and identification of key points;adopt network efficiency,maximum connectivity subgraph and network connectivity as vulnerability measurement indexes,and observe the changes of vulnerability indexes of key nodes under deliberate attacks and 137 nodes under random attacks.The results demonstrate that the decreasing trend of the maximum connectivity subgraph indicator is slower and the decreasing trend of the network efficiency and connectivity indicators is faster when the critical nodes of the regional airline network are deliberately attacked.Besides,the decreasing trend of the network efficiency indicator is faster and the decreasing trend of the maximum connectivity subgraph indicator is slower when the nodes of four different categories are randomly attacked.Finally,it is proposed to identify and focus on protecting critical nodes in order to better improve the security level of regional airline system.展开更多
In the non-inertial coordinates attached to the model wing, the two-dimensional unsteady flow field triggered by the motion of the model wing, similar to the flapping of the insect wings, was numerically simulated. On...In the non-inertial coordinates attached to the model wing, the two-dimensional unsteady flow field triggered by the motion of the model wing, similar to the flapping of the insect wings, was numerically simulated. One of the advantages of our method is that it has avoided the difficulty related to the moving-boundary problem. Another advantage is that the model has three degrees of freedom and can be used to simulate arbitrary motions of a two-dimensional wing in plane only if the motion is known. Such flexibility allows us to study how insects control their flying. Our results show that there are two parameters that are possibly utilized by insects to control their flight: the phase difference between the wing translation and rotation, and the lateral amplitude of flapping along the direction perpendicular to the average flapping plane.展开更多
Heavy rain is a common abnormal weather in China, which is prone to major natural disasters such as floods. By using China National Climate Center’s DERF2.0 (the second-generation product of monthly dynamic extended ...Heavy rain is a common abnormal weather in China, which is prone to major natural disasters such as floods. By using China National Climate Center’s DERF2.0 (the second-generation product of monthly dynamic extended ensemble prediction) models and NCEP (National Centers for Environmental Prediction) data, and using synoptic and dynamic methods and other research methods, the rainfall weather process in most of China from October 3-6, 2021 is analyzed. The results show that: 1) this process had a long duration, large cumulative rainfall and strong extreme. 2) The warm and wet flow and the cold air intersected in the central and western regions of China and Northeast China, which resulted in a regional rainstorm process within ten days. 3) There was a low-level jet moving from Guizhou and Hunan to the south of Northeast China, bringing a lot of water vapor. To sum up, the rainfall process of this round has a certain relationship with the adjustment of atmospheric circulation.展开更多
Airborne navigation database(NavDB)coding directly affects the result of analysis on the instrument flight procedure by the modern aircraft flight management computer(FMC).A reasonable flight track transition mode can...Airborne navigation database(NavDB)coding directly affects the result of analysis on the instrument flight procedure by the modern aircraft flight management computer(FMC).A reasonable flight track transition mode can improve the track tracking accuracy and flight quality of the aircraft.According to the path terminator(PT)and track transition characteristics of the performance based navigation(PBN)instrument flight procedure and by use of the world geodetic system(WGS)-84 ellipsoidal coordinate system,the algorithms for“fly by”and“fly over”track transition connections are developed,together with the algorithms for coordinates of fix-to-altitude(FA)altitude termination point and heading-to-an-intercept(VI)track entry point and for track transition display of the navigation display(ND).According to the simulation carried out based on the PBN instrument approach procedure coding of a certain airport and the PBN route data at a high altitude,the algorithm results are consistent with the FMC-calculated results and the actual ND results.展开更多
How to accurately recognize the mental state of pilots is a focus in civil aviation safety.The mental state of pilots is closely related to their cognitive ability in piloting.Whether the cognitive ability meets the s...How to accurately recognize the mental state of pilots is a focus in civil aviation safety.The mental state of pilots is closely related to their cognitive ability in piloting.Whether the cognitive ability meets the standard is related to flight safety.However,the pilot’s working state is unique,which increases the difficulty of analyzing the pilot’s mental state.In this work,we proposed a Convolutional Neural Network(CNN)that merges attention to classify the mental state of pilots through electroencephalography(EEG).Considering the individual differences in EEG,semi-supervised learning based on improvedK-Means is used in themodel training to improve the generalization ability of the model.We collected the EEG data of 12 pilot trainees during the simulated flight and compared the method in this paper with other methods on this data.The method in this paper achieved an accuracy of 86.29%,which is better than 4D-aNN and HCNN etc.Negative emotion will increase the probability of fatigue appearing,and emotion recognition is also meaningful during the flight.Then we conducted experiments on the public dataset SEED,and our method achieved an accuracy of 93.68%.In addition,we combine multiple parameters to evaluate the results of the classification network on a more detailed level and propose a corresponding scoring mechanism to display the mental state of the pilots directly.展开更多
The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameteri...The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.展开更多
Existing specific emitter identification(SEI)methods based on hand-crafted features have drawbacks of losing feature information and involving multiple processing stages,which reduce the identification accuracy of emi...Existing specific emitter identification(SEI)methods based on hand-crafted features have drawbacks of losing feature information and involving multiple processing stages,which reduce the identification accuracy of emitters and complicate the procedures of identification.In this paper,we propose a deep SEI approach via multidimensional feature extraction for radio frequency fingerprints(RFFs),namely,RFFsNet-SEI.Particularly,we extract multidimensional physical RFFs from the received signal by virtue of variational mode decomposition(VMD)and Hilbert transform(HT).The physical RFFs and I-Q data are formed into the balanced-RFFs,which are then used to train RFFsNet-SEI.As introducing model-aided RFFs into neural network,the hybrid-driven scheme including physical features and I-Q data is constructed.It improves physical interpretability of RFFsNet-SEI.Meanwhile,since RFFsNet-SEI identifies individual of emitters from received raw data in end-to-end,it accelerates SEI implementation and simplifies procedures of identification.Moreover,as the temporal features and spectral features of the received signal are both extracted by RFFsNet-SEI,identification accuracy is improved.Finally,we compare RFFsNet-SEI with the counterparts in terms of identification accuracy,computational complexity,and prediction speed.Experimental results illustrate that the proposed method outperforms the counterparts on the basis of simulation dataset and real dataset collected in the anechoic chamber.展开更多
Based on the significant weather report,CG lightning,composite radar reflectivity,and ERA5 reanalysis data,we first studied the spatiotemporal distribution characteristics of four types(only severe convective wind(SCW...Based on the significant weather report,CG lightning,composite radar reflectivity,and ERA5 reanalysis data,we first studied the spatiotemporal distribution characteristics of four types(only severe convective wind(SCW);SCW and hail;SCW and short-duration heavy rainfall(SDHR);and SCW,hail,and SDHR)of convective weather events related to SCW during the warm season(May to September)from 2011 to 2018 in North China.Second,severe convective cases producing SCW were selected to statistically analyze the initiation,decay,lifetime,and organizational characteristics of convective systems.Finally,using ERA5 reanalysis data and conventional surface observation data,preconvective soundings were constructed to explore the differences in environmental conditions for initiating convective systems between SCW and non-SCW.The results indicate that mixed-type of SCW and SDHR events occur more frequently over plains,while other types of convective weather occur more frequently over mountains.The frequency peak of SCW occurs in June,while mixed convective weather peaks in July.The initiation time of convective systems is concentrated between 1000 and 1300 BST,with a peak at 1200 BST.Over mountains,the daily peaks of ordinary and significant SCW generally occur at 1700-1800 BST and 1600-1700 BST,respectively,while over plains,the peak of ordinary SCW typically lags behind that of mountains by 1-2 hours.Additionally,SCW systems are mainly initiated over mountains,with most lifetimes lasting 7–13 hours.Nonlinear convective systems produce the most SCW events,followed by trailing-stratiform convective systems.The convective available potential energy(CAPE),downdraft convective available potential energy,and the temperature difference between 850 and 500 hPa can all distinguish between SCW systems and non-SCW systems occurring over plains.Compared to non-SCW convective systems,SCW convective systems over mountains are more likely to occur in environments with less precipitable water,while SCW convective systems over plains are more likely to occur in environments with higher CAPE and stronger deep-layer wind shear.展开更多
Political discourse is an important component of Chinese discourse,and its translation criticism research is of great significance for telling the story of China well and establishing an international image.Iconicity ...Political discourse is an important component of Chinese discourse,and its translation criticism research is of great significance for telling the story of China well and establishing an international image.Iconicity is an important means to form the rhetorical effect,so the translation of political discourse must try to reproduce the iconicity of the original text.By analyzing the syntactic iconicity of the English version of the White paper China’s Epic Journey from Poverty to Prosperity,it is found that for the translation of quantitative iconicity,it is necessary to adjust the translation by synonym substitution or sentence pattern conversion on the basis of ensuring the representation of quantitative rhetoric.For the translation of sequential iconicity,it should strive for representing the logical sequence of the original text while enhancing the readability and rhetorical power of the translation.For the translation of distance iconicity,it is necessary to reproduce the delicacy of the original,meanwhile,to consider the emotional and rhetorical implication.The research emphasizes the balance between“syntactic iconicity of original text representation”and“appeal and readability of translated text”.The study is helpful to telling the“China’s poverty reduction story well”and translation practice of political discourse.展开更多
Resilient wheels are extensively used in urban rail transit, especially for tramway systems, owing to its advantages in noise reduction. A new type of resilient wheel for a metro is designed, and its characteristics o...Resilient wheels are extensively used in urban rail transit, especially for tramway systems, owing to its advantages in noise reduction. A new type of resilient wheel for a metro is designed, and its characteristics of vibration and sound radiation, including the rolling noise of a resilient single wheel coupled with a track, are studied in this paper. A two-step research is presented. Firstly, laboratory experiments were conducted to obtain the vibration response of the designed resilient wheel under the radial excitation on its tread. Secondly, the rolling noise model of the resilient wheel coupled with a slab track used in a metro line is developed. The wheel model is based on the 3 D finite elementand boundary element methods and verified by using the experimental results obtained from the laboratory. The track vibration model is based on the wavenumber finite element method, and the track sound radiation is calculatedby using an e cient frequency-domain Rayleigh method. The interaction of the resilient wheel and the slab track is analyzed considering the measured wheel/rail roughness of the metro. The contribution of the resilient wheel to the reduction of wheel/rail system noise is analyzed. The results show that the resilient wheel can e ectively reduce the wheel/rail rolling noise by approximately 2 dB(A) to 3 dB(A), mainly because the radiated noise by the rail is reduced. In addition, the elastic modulus of the rubber has an important influence on the noise reduction of resilient wheels.展开更多
基金funded by the National Natural Science Foundation of China (Grant No. 91937301)the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (Grant No. 2019QZKK0105)the National Natural Science Foundation of China (Grant Nos. 41975017, 41905010)。
文摘Based on eddy covariance(EC) measurements during 2016–20, the effects of sky conditions on the net ecosystem productivity(NEP) over a subtropical “floating blanket ” wetland were investigated. Sky conditions were divided into overcast, cloudy, and sunny conditions. On the half-hourly timescale, the daytime NEP responded more rapidly to the changes in the total photosynthetic active radiation(PARt) under overcast and cloudy skies than that under sunny skies. The increase in the apparent quantum yield under overcast and cloudy conditions was the greatest in spring and the least in summer. Additionally, lower atmospheric vapor pressure deficit(VPD) and moderate air temperature were more conducive to enhancing the apparent quantum yield under cloudy skies. On the daily timescale, NEP and the gross primary production(GPP) were higher under cloudy or sunny conditions than those under overcast conditions across seasons. The daily NEP and GPP during the wet season peaked under cloudy skies. The daily ecosystem light use efficiency(LUE) and water use efficiency(WUE) during the wet season also changed with sky conditions and reached their maximum under overcast and cloudy skies, respectively. The diffuse photosynthetic active radiation(PAR_d) and air temperature were primarily responsible for the variation of daily NEP from half-hourly to monthly timescales, and the direct photosynthetic active radiation(PAR_b) had a secondary effect on NEP. Under sunny conditions, PAR_b and air temperature were the dominant factors controlling daily NEP. While daily NEP was mainly controlled by PAR_d under cloudy and overcast conditions.
基金National Key Research and Development Program of China(2019YFC1510400)National Natural Science Foundation of China(41975056,41675045)。
文摘Composite radar reflectivity data during April-September 2011-2015 are used to investigate and classify storms in south China(18-27°N;105-120°E). The storms appear most frequently in May. They are either linear;cellular or nonlinear systems, taking up 29.45%, 24.51% and 46.04%, respectively, in terms of morphology. Linear systems are subdivided into six morphologies: trailing stratiform precipitation(TS), bow echoes(BE), leading stratiform precipitation(LS), embedded line(EL), no stratiform precipitation(NS) and parallel stratiform precipitation(PS). The TS and NS modes have the highest frequencies but there are only small samples of LS(0.61%) and PS(0.79%) modes.Severe convective wind(≥17m s-1at surface level) accounts for the highest percentage(35%) of severe convective weather events produced by cellular systems including individual cells(IC) and clusters of cells(CC). Short-duration heavy rainfall(≥50 mm h-1) and severe convective wind are the most common severe weather associated with TS and BE modes. Comparison of environmental physical parameters shows that cellular convection systems tend to occur in the environment with favorable thermal condition, substantial unstable energy and low precipitable water from the surface to300 hPa(PWAT). However, the environmental conditions favoring the initiation of linear systems feature strong vertical wind shear, high PWAT, and intense convective inhibition. The environmental parameters favoring the initiation of nonlinear systems are between those of the other two types of morphology.
基金the National Natural Science Foundation of China(U2033213)the Fundamental Research Funds for the Central Universities(FZ2021ZZ01,FZ2022ZX50).
文摘With the development of the integration of aviation safety and artificial intelligence,research on the combination of risk assessment and artificial intelligence is particularly important in the field of risk management,but searching for an efficient and accurate risk assessment algorithm has become a challenge for the civil aviation industry.Therefore,an improved risk assessment algorithm(PS-AE-LSTM)based on long short-term memory network(LSTM)with autoencoder(AE)is proposed for the various supervised deep learning algorithms in flight safety that cannot adequately address the problem of the quality on risk level labels.Firstly,based on the normal distribution characteristics of flight data,a probability severity(PS)model is established to enhance the quality of risk assessment labels.Secondly,autoencoder is introduced to reconstruct the flight parameter data to improve the data quality.Finally,utilizing the time-series nature of flight data,a long and short-termmemory network is used to classify the risk level and improve the accuracy of risk assessment.Thus,a risk assessment experimentwas conducted to analyze a fleet landing phase dataset using the PS-AE-LSTMalgorithm to assess the risk level associated with aircraft hard landing events.The results show that the proposed algorithm achieves an accuracy of 86.45%compared with seven baseline models and has excellent risk assessment capability.
基金the Study on the Impact of the Construction and Development of Southwest Plateau Airport on the Ecological Environment(CZKY2023032).
文摘The architecture and working principle of coordinated search and rescue system of unmanned/manned aircraft,which is composed of manned/unmanned aircraft and manned aircraft,were first introduced,and they can cooperate with each other to complete a search and rescue task.Secondly,a threat assessment method based on meteorological data was proposed,and potential meteorological threats,such as storms and rainfall,can be predicted by collecting and analyzing meteorological data.Finally,an experiment was carried out to evaluate the performance of the proposed method in different scenarios.The experimental results show that the coordinated search and rescue system of unmanned/manned aircraft can be used to effectively assess meteorological threats and provide accurate search and rescue guidance.
文摘In order to promote the application and development of civil aviation safety(CAS)in the field of safety and enrich the theoretical system of CAS research,the methodology of CAS was studied.The definition of CAS was reconstructed,its connotation was explained from four aspects,and its research object was clarified.This paper discussed the mechanism of CAS,that is,to maintain system security through the establishment of safety prevention and control system(SPCS),and explained the research content of CAS from theory and technology application.Five principles and applicable methods for CAS research were summarized.In addition,it put forward the general procedure of CAS research,explained the specific content and implementation method or basis of each step.The research results show that the methodology of CAS is a systematic theoretical system with certain guiding significance,combined with the mechanism,research content,research principles and methods,and research procedures of CAS.
文摘This paper study the feasibility of task-based teaching model in flight attendant oral English class in China. The problem of this research is to discuss why task-based teaching can be used in flight attendant oral English class to improve students' oral English and its advantage. The research results shows that TBT makes language learningcloser tolearners' real life. However, the drawbacks manifests that the task-based methodplaces high requirements on teachers and students since it is more flexible and cooperative, which calls for high control from teachers and good collaboration from students.
基金funded by the Guizhou Geological exploration fund (No. [2015]21)the Guizhou Geological mineral science cooperation fund (Nos. [2015]5, [2016]5, [2017]1092)
文摘We studied the states of rare earth elements in ore of the Xianglushan rare earth deposit. Rare earth ore samples were tested and examined by scanning electron microscope, electron probe, and chemical leaching. No independent rare earth minerals were detected by scanning electron microscope. Elements detected by the electronic probe for the in situ micro-zone of the sample included: O,Al, Si, Ca, Mg, Fe, Ti, K, Na, S, Cl, C, Cu, Cr, V, and Pt.Rare earth elements were not detected by electron probe.(NH_4)_2 SO_4,(NH_4)Cl, NaCl, and H_2 SO_4 were used as reagents in chemical leaching experiments that easily leached out rare earth elements under the action of 10%reagent, indicating that the rare earth elements in ore are mainly in the ionic state rather than present as rare earth minerals.
基金National Basic Research Program of China(973 Program)(2012CB417403)National Natural Science Foundation of China(NSFC,41205048)
文摘By using the gauged rainfall in 160 stations within China's Mainland and the NCEP/NCAR reanalysis data, the impacts of anomalous SST in Kuroshio and its extension on precipitation in Northeast China were investigated. The results show that a difference in the meridional circulation such as the East Asia/Pacific teleconnection pattern(EAP)may be responsible for the difference in rainfall between 1998 and 2010. In comparison with 1998, the anomalous meridional circulation pattern in 2010 shifted northeastward, and then the western subtropical high, the mid-latitudinal trough and the northeastern Asia blocking high also shifted northeastward, causing intensified convergence of the cold and warm air masses at the southern region and thus more rainfall in the southwestern region and less in the northwestern region. In 1998, the anomalous cyclone, one component of the meridional pattern, located at the Songhuajiang-Nengjiang River basin, resulted in more rainfall in the majority of the area. The results of observation and the model show that the difference in SSTA in Kuroshio and its extension under the background of different El Ni觡o events is the key point:(1) The anomalous warmth moved westward from the mid-Pacific to the east of the Philippine Sea during the central event, which led the heat resources shifting to the northeast in 2010; subsequently, a shift occurred to the north of the anomalous ascent and decent, followed by a warm SSTA in the region of Kuroshio's extension in 2010 and Kuroshio in 1998.(2) The warm SSTA in the Kuroshio extension causing the Rossby wave activity flux strengthened in 2010, and then the westerly jet shifted northward and extended eastward. A warm SSTA in Kuroshio and cold SSTA in its extension in 1998 caused the westerly jet to shift southward and weaken. As a result,the anomalous anticyclone and cyclone shifted northward in 2010, and the blocking high also shifted northward.
基金National Key Basic Research Project of China (2009CB421404)a key project of Chinese National Science Foundation (40930950+2 种基金 40730951)Chinese National Science Foundation (40575021)General Program of CAFUC (J2010-29)
文摘Previous studies emphasize the important role of a "north-ridge versus south-trough" dipole (affecting the latitudes from 20° to 75° N around the Tibetan Plateau) of anomalous geopotential height ( Z ) in the early-2008 abnormal cryogenic freezing-rain-and-snow events in the southern part of China. The present study intends to extract the leading signal facilitating the dipole based on the numerical outputs of a full Z-linear model for diagnosing the global Z . Using this model built on full primitive equations in spherical-isobaric coordinates, we can further split the anomaly of Z-Zfζ-uβ (representing the Z component not explicitly associated with the Coriolis parameter f and its meridional derivative β ) into 15 components. With the model-output Zfζ-uβ (mainly accounting for the dipole under the geostrophic balance) and Z-Zfζ-uβ matrices as the left and right singular vectors respectively, a maximum covariance analysis (MCA) is performed to extract the significant 2-4-day leading signal carried by the MCA Z-Zfζ-uβ mode in the upstream area of the dipole. This leading signal is mainly attributed to 1) the abnormally strong westerlies centered around the exit region of the Atlantic jet-stream and 2) the corresponding anomalous 950-300 hPa anticyclone to the south of the abnormally strong center of westerlies. The energy of the positive wave center around this jet exit region favors the downstream north-ridge while the energy of the negative wave center associated with the anomalous anticyclone favors the downstream south-trough.
基金National Basic Research Program of China(2012CB417403)National Natural Science Foundation of China(41205048)
文摘The relationship between summer rainfall anomalies in northeast China and two types of El Ni?o events is investigated by using observation data and an atmospheric general circulation model(AGCM).It is shown that,for different types of El Ni?o events,there is different rainfall anomaly pattern in the following summer.In the following year of a typical El Ni?o event,there are remarkable positive rainfall anomalies in the central-western region of northeast China,whereas the pattern of more rainfall in the south end and less rainfall in the north end of northeast China easily appears in an El Ni?o Modoki event.The reason for the distinct difference is that,associated with the different sea surface temperature anomalies(SSTA)along the equatorial Pacific,the large-scale circulation anomalies along east coast of East Asia shift northward in the following summer after El Ni?o Modoki events.Influenced by the anomalous anticyclone in Philippine Sea,southwesterly anomalies over eastern China strengthen summer monsoon and bring more water vapor to northeast China.Meanwhile,convergence and updraft is strengthened by the anomalous cyclone right in northeast China in typical El Ni?o events.These moisture and atmospheric circulation conditions are favorable for enhanced precipitation.However,because of the northward shift,the anomalous anticyclone in the Philippine Sea in typical El Ni?o cases shifts to the south of Japan in Modoki years,and the anomalous cyclone in northeast China in typical El Ni?o cases shifts to the north of northeast China,leading to the"dipole pattern"of rainfall anomalies.According to the results of numerical experiments,we further confirm that the tropical SSTA in different types of El Ni?o event can give rise to observed rainfall anomaly patterns in northeast China.
文摘To enhance the accuracy of performance analysis of regional airline network,this study applies complex network theory and Density-Based Spatial Clustering of Applications with Noise(DBSCAN)algorithm to investigate the topology of regional airline network,constructs node importance index system,and clusters 161 airport nodes of regional airline network.Besides,entropy power method and approximating ideal solution method(TOPSIS)is applied to comprehensively evaluate the importance of airport nodes and complete the classification of nodes and identification of key points;adopt network efficiency,maximum connectivity subgraph and network connectivity as vulnerability measurement indexes,and observe the changes of vulnerability indexes of key nodes under deliberate attacks and 137 nodes under random attacks.The results demonstrate that the decreasing trend of the maximum connectivity subgraph indicator is slower and the decreasing trend of the network efficiency and connectivity indicators is faster when the critical nodes of the regional airline network are deliberately attacked.Besides,the decreasing trend of the network efficiency indicator is faster and the decreasing trend of the maximum connectivity subgraph indicator is slower when the nodes of four different categories are randomly attacked.Finally,it is proposed to identify and focus on protecting critical nodes in order to better improve the security level of regional airline system.
文摘In the non-inertial coordinates attached to the model wing, the two-dimensional unsteady flow field triggered by the motion of the model wing, similar to the flapping of the insect wings, was numerically simulated. One of the advantages of our method is that it has avoided the difficulty related to the moving-boundary problem. Another advantage is that the model has three degrees of freedom and can be used to simulate arbitrary motions of a two-dimensional wing in plane only if the motion is known. Such flexibility allows us to study how insects control their flying. Our results show that there are two parameters that are possibly utilized by insects to control their flight: the phase difference between the wing translation and rotation, and the lateral amplitude of flapping along the direction perpendicular to the average flapping plane.
文摘Heavy rain is a common abnormal weather in China, which is prone to major natural disasters such as floods. By using China National Climate Center’s DERF2.0 (the second-generation product of monthly dynamic extended ensemble prediction) models and NCEP (National Centers for Environmental Prediction) data, and using synoptic and dynamic methods and other research methods, the rainfall weather process in most of China from October 3-6, 2021 is analyzed. The results show that: 1) this process had a long duration, large cumulative rainfall and strong extreme. 2) The warm and wet flow and the cold air intersected in the central and western regions of China and Northeast China, which resulted in a regional rainstorm process within ten days. 3) There was a low-level jet moving from Guizhou and Hunan to the south of Northeast China, bringing a lot of water vapor. To sum up, the rainfall process of this round has a certain relationship with the adjustment of atmospheric circulation.
基金supported by the National Natural Science Foundation of China(u2133209)。
文摘Airborne navigation database(NavDB)coding directly affects the result of analysis on the instrument flight procedure by the modern aircraft flight management computer(FMC).A reasonable flight track transition mode can improve the track tracking accuracy and flight quality of the aircraft.According to the path terminator(PT)and track transition characteristics of the performance based navigation(PBN)instrument flight procedure and by use of the world geodetic system(WGS)-84 ellipsoidal coordinate system,the algorithms for“fly by”and“fly over”track transition connections are developed,together with the algorithms for coordinates of fix-to-altitude(FA)altitude termination point and heading-to-an-intercept(VI)track entry point and for track transition display of the navigation display(ND).According to the simulation carried out based on the PBN instrument approach procedure coding of a certain airport and the PBN route data at a high altitude,the algorithm results are consistent with the FMC-calculated results and the actual ND results.
基金This research is supported by program of Key Laboratory of Flight Technology and Flight Safety(FZ2020KF07)Ms.ZaijunWang received the grant.This research is also supported by Postgraduate Innovation Project of CAFUC(X2021-37)Mr.Qianlei Wang received the grant.
文摘How to accurately recognize the mental state of pilots is a focus in civil aviation safety.The mental state of pilots is closely related to their cognitive ability in piloting.Whether the cognitive ability meets the standard is related to flight safety.However,the pilot’s working state is unique,which increases the difficulty of analyzing the pilot’s mental state.In this work,we proposed a Convolutional Neural Network(CNN)that merges attention to classify the mental state of pilots through electroencephalography(EEG).Considering the individual differences in EEG,semi-supervised learning based on improvedK-Means is used in themodel training to improve the generalization ability of the model.We collected the EEG data of 12 pilot trainees during the simulated flight and compared the method in this paper with other methods on this data.The method in this paper achieved an accuracy of 86.29%,which is better than 4D-aNN and HCNN etc.Negative emotion will increase the probability of fatigue appearing,and emotion recognition is also meaningful during the flight.Then we conducted experiments on the public dataset SEED,and our method achieved an accuracy of 93.68%.In addition,we combine multiple parameters to evaluate the results of the classification network on a more detailed level and propose a corresponding scoring mechanism to display the mental state of the pilots directly.
基金supported by the National Natural Science Foundation of China(Grant Nos.42175099,42027804,42075073)the Innovative Project of Postgraduates in Jiangsu Province in 2023(Grant No.KYCX23_1319)+3 种基金supported by the National Natural Science Foundation of China(Grant No.42205080)the Natural Science Foundation of Sichuan(Grant No.2023YFS0442)the Research Fund of Civil Aviation Flight University of China(Grant No.J2022-037)supported by the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(Earth Lab)。
文摘The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.
基金supported by the National Natural Science Foundation of China(62061003)Sichuan Science and Technology Program(2021YFG0192)the Research Foundation of the Civil Aviation Flight University of China(ZJ2020-04,J2020-033)。
文摘Existing specific emitter identification(SEI)methods based on hand-crafted features have drawbacks of losing feature information and involving multiple processing stages,which reduce the identification accuracy of emitters and complicate the procedures of identification.In this paper,we propose a deep SEI approach via multidimensional feature extraction for radio frequency fingerprints(RFFs),namely,RFFsNet-SEI.Particularly,we extract multidimensional physical RFFs from the received signal by virtue of variational mode decomposition(VMD)and Hilbert transform(HT).The physical RFFs and I-Q data are formed into the balanced-RFFs,which are then used to train RFFsNet-SEI.As introducing model-aided RFFs into neural network,the hybrid-driven scheme including physical features and I-Q data is constructed.It improves physical interpretability of RFFsNet-SEI.Meanwhile,since RFFsNet-SEI identifies individual of emitters from received raw data in end-to-end,it accelerates SEI implementation and simplifies procedures of identification.Moreover,as the temporal features and spectral features of the received signal are both extracted by RFFsNet-SEI,identification accuracy is improved.Finally,we compare RFFsNet-SEI with the counterparts in terms of identification accuracy,computational complexity,and prediction speed.Experimental results illustrate that the proposed method outperforms the counterparts on the basis of simulation dataset and real dataset collected in the anechoic chamber.
基金supported by the National Natural Science Foundation of China(Grant Nos.42375008,41975056,42005006)the National Key Scientific and Technological Infrastructure Project“Earth System Numerical Simulation Facility”(EarthLab)the Beijing Municipal Natural Science Foundation(Grant No.8222079)。
文摘Based on the significant weather report,CG lightning,composite radar reflectivity,and ERA5 reanalysis data,we first studied the spatiotemporal distribution characteristics of four types(only severe convective wind(SCW);SCW and hail;SCW and short-duration heavy rainfall(SDHR);and SCW,hail,and SDHR)of convective weather events related to SCW during the warm season(May to September)from 2011 to 2018 in North China.Second,severe convective cases producing SCW were selected to statistically analyze the initiation,decay,lifetime,and organizational characteristics of convective systems.Finally,using ERA5 reanalysis data and conventional surface observation data,preconvective soundings were constructed to explore the differences in environmental conditions for initiating convective systems between SCW and non-SCW.The results indicate that mixed-type of SCW and SDHR events occur more frequently over plains,while other types of convective weather occur more frequently over mountains.The frequency peak of SCW occurs in June,while mixed convective weather peaks in July.The initiation time of convective systems is concentrated between 1000 and 1300 BST,with a peak at 1200 BST.Over mountains,the daily peaks of ordinary and significant SCW generally occur at 1700-1800 BST and 1600-1700 BST,respectively,while over plains,the peak of ordinary SCW typically lags behind that of mountains by 1-2 hours.Additionally,SCW systems are mainly initiated over mountains,with most lifetimes lasting 7–13 hours.Nonlinear convective systems produce the most SCW events,followed by trailing-stratiform convective systems.The convective available potential energy(CAPE),downdraft convective available potential energy,and the temperature difference between 850 and 500 hPa can all distinguish between SCW systems and non-SCW systems occurring over plains.Compared to non-SCW convective systems,SCW convective systems over mountains are more likely to occur in environments with less precipitable water,while SCW convective systems over plains are more likely to occur in environments with higher CAPE and stronger deep-layer wind shear.
基金Project of the Humanities and Social Sciences on Youth Fund of the Ministry of Education:The Translation and Communication of the Discourse of Rural Revitalization(ratification No.:24YJCZH403)Civil Aviation Flight University of China Special Project of“Study of The 20th CPC National Congress”:Translation and Communication of Poverty Alleviation Discourse of CPC(ratification No.:ESD2023-02).
文摘Political discourse is an important component of Chinese discourse,and its translation criticism research is of great significance for telling the story of China well and establishing an international image.Iconicity is an important means to form the rhetorical effect,so the translation of political discourse must try to reproduce the iconicity of the original text.By analyzing the syntactic iconicity of the English version of the White paper China’s Epic Journey from Poverty to Prosperity,it is found that for the translation of quantitative iconicity,it is necessary to adjust the translation by synonym substitution or sentence pattern conversion on the basis of ensuring the representation of quantitative rhetoric.For the translation of sequential iconicity,it should strive for representing the logical sequence of the original text while enhancing the readability and rhetorical power of the translation.For the translation of distance iconicity,it is necessary to reproduce the delicacy of the original,meanwhile,to consider the emotional and rhetorical implication.The research emphasizes the balance between“syntactic iconicity of original text representation”and“appeal and readability of translated text”.The study is helpful to telling the“China’s poverty reduction story well”and translation practice of political discourse.
基金Supported by National Key R&D Program of China(Grant No.2017YFB1201103-08)National Nature Science Foundation of China(Grant No.51605318)
文摘Resilient wheels are extensively used in urban rail transit, especially for tramway systems, owing to its advantages in noise reduction. A new type of resilient wheel for a metro is designed, and its characteristics of vibration and sound radiation, including the rolling noise of a resilient single wheel coupled with a track, are studied in this paper. A two-step research is presented. Firstly, laboratory experiments were conducted to obtain the vibration response of the designed resilient wheel under the radial excitation on its tread. Secondly, the rolling noise model of the resilient wheel coupled with a slab track used in a metro line is developed. The wheel model is based on the 3 D finite elementand boundary element methods and verified by using the experimental results obtained from the laboratory. The track vibration model is based on the wavenumber finite element method, and the track sound radiation is calculatedby using an e cient frequency-domain Rayleigh method. The interaction of the resilient wheel and the slab track is analyzed considering the measured wheel/rail roughness of the metro. The contribution of the resilient wheel to the reduction of wheel/rail system noise is analyzed. The results show that the resilient wheel can e ectively reduce the wheel/rail rolling noise by approximately 2 dB(A) to 3 dB(A), mainly because the radiated noise by the rail is reduced. In addition, the elastic modulus of the rubber has an important influence on the noise reduction of resilient wheels.