Using an accurate energy model,this paper simulated existing commercial buildings to compare PMV-based comfort control with conventional thermostatic control and conduct a sensitivity analysis using the Design of Expe...Using an accurate energy model,this paper simulated existing commercial buildings to compare PMV-based comfort control with conventional thermostatic control and conduct a sensitivity analysis using the Design of Experiments method with monitored energy consumption data.This analysis was applied considering the impact of building envelope characteristics including thermal insulation level of exterior walls and air leakage rate on the ability of both control options to maintain indoor thermal comfort while minimizing cooling energy consumption.The analysis findings indicated that PMV-based comfort control is viable for striking a middle ground between thermal comfort and heating energy consumption with a PPD(predicted percentage of dissatisfied)level at 8%for any combination of walls’R-value and air infiltration rate while temperature-based controls result in an unacceptable indoor thermal comfort performance especially for low R-values regardless of the air infiltration rate with PPD level reaching over 76%.Also,the results show that in a comfort-controlled space,the average radioactive temperature and occupant-related features like metabolic rate and clothing level have a far bigger effect on energy use than other parameters like relative humidity.展开更多
文摘Using an accurate energy model,this paper simulated existing commercial buildings to compare PMV-based comfort control with conventional thermostatic control and conduct a sensitivity analysis using the Design of Experiments method with monitored energy consumption data.This analysis was applied considering the impact of building envelope characteristics including thermal insulation level of exterior walls and air leakage rate on the ability of both control options to maintain indoor thermal comfort while minimizing cooling energy consumption.The analysis findings indicated that PMV-based comfort control is viable for striking a middle ground between thermal comfort and heating energy consumption with a PPD(predicted percentage of dissatisfied)level at 8%for any combination of walls’R-value and air infiltration rate while temperature-based controls result in an unacceptable indoor thermal comfort performance especially for low R-values regardless of the air infiltration rate with PPD level reaching over 76%.Also,the results show that in a comfort-controlled space,the average radioactive temperature and occupant-related features like metabolic rate and clothing level have a far bigger effect on energy use than other parameters like relative humidity.