Copper based catalysts have high potential for the substituent of noble-metal based catalysts as their high selectivity and moderate activity for selective hydrogenation reaction;however,achieving further high catalyt...Copper based catalysts have high potential for the substituent of noble-metal based catalysts as their high selectivity and moderate activity for selective hydrogenation reaction;however,achieving further high catalytic stability is very difficult.In this work,the carbonization process of Cu-based organic frameworks was explored for the synthesis of highly-dispersed Cu supported by hierarchically porous carbon with high catalytic performance for selective hydrogenation of 1,3-butadiene.The porous hierarchy of carbon support and the dispersion of copper nanoparticles can be precisely tuned by controlling the carbonization process.The resultant catalyst carbonized at 600°C exhibits a rather low reaction temperature at 75°C for 100%butadiene conversion with 100%selectivity to butenes,due to its reasonable porous hierarchy and highly-dispersed copper sites.More importantly,unprecedentedly stability of the corresponding Cu catalyst was firstly observed for selective 1,3-butadiene hydrogenation,with both 100%butadiene conversion and 100%butenes selectivity over 120 h of reaction at 75°C.This study verifies that a simply control the carbonization process of metal organic frameworks can be an effective way to obtain Cu-based catalysts with superior catalytic performance for selective hydrogenation reaction.展开更多
Graphitic carbon nitride(g-C_(3)N_(4))has attracted great interest in photocatalysis and photoelectrocatalysis.However,their poor hydrophilicity poses a great challenge for their applications in aqueous environment.He...Graphitic carbon nitride(g-C_(3)N_(4))has attracted great interest in photocatalysis and photoelectrocatalysis.However,their poor hydrophilicity poses a great challenge for their applications in aqueous environment.Here,we demonstrate synthesis of a hydrophilic bi-functional hierarchical architecture by the assembly of B-doped g-C_(3)N_(4)nanoplatelets.Such hierarchical B-doped g-C_(3)N_(4)material enables full utilization of their highly enhanced visible light absorption and photogenerated carrier separation in aqueous medium,leading to an excellent photocatalytic H_(2)O_(2)production rate of 4240.3μM g^(-1)h^(-1),2.84,2.64 and 2.13 times higher than that of the bulk g-C_(3)N_(4),g-C_(3)N_(4)nanoplatelets and bulk B doped g-C_(3)N_(4),respectively.Photoanodes based on these hierarchical architectures can generate an unprecedented photocurrent density of 1.72 m A cm^(-2)at 1.23 V under AM 1.5 G illumination for photoelectrochemical water splitting.This work makes a fundamental improvement towards large-scale exploitation of highly active,hydrophilic and stable metal-free g-C_(3)N_(4)photocatalysts for various practical applications.展开更多
Owing to their facile reactants migration channels,large surface area,maximized exposure of reaction sites and efficient light utilization,three-dimensionally ordered macroporous(3DOM)materials have been extensively a...Owing to their facile reactants migration channels,large surface area,maximized exposure of reaction sites and efficient light utilization,three-dimensionally ordered macroporous(3DOM)materials have been extensively adopted in environmental fields such as pollutants removal,environmental detection as well as bacterial disinfection.In this review,the up-to-date 3DOM materials,the corresponding synthesis protocols and the related environmental applications involving photo/electrocatalytic pollutants decomposition,thermocatalytic volatile organic compounds(VOCs)elimination,hazardous substances sensing and bacteria inactivation are completely presented.Simultaneously,the inherent advantages and mechanisms of 3DOM materials in different environmental utilization are thoroughly demonstrated and summarized.Furthermore,the improved performance of environmental applications and the methods of fabricating 3DOM materials are correlated in depth,being favorable for readers to obtain the fundamental knowledge and to motivate some innovative thoughts for modifying 3DOM materials with further elevated environmental remediation capability.Finally,the current difficulties and prospects of 3DOM materials for large-scale and commercial applications are outlooked.This critical review is anticipated to promote the optimization of 3DOM materials and to ripen the related environmental remediation techniques.展开更多
I completed my medical studies at the Karolinska Institute in Stockholm but have always been devoted to basic research. My longstanding interest is to understand fundamental DNA repair mechanisms in the fields of canc...I completed my medical studies at the Karolinska Institute in Stockholm but have always been devoted to basic research. My longstanding interest is to understand fundamental DNA repair mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA. I initially measured DNA decay, including rates of base loss and cytosine deamination. I have dis- covered several important DNA repair proteins and determined their mechanisms of action. The discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized for different types of DNA damage. The base excision repair pathway was first reconstituted with human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells, and led the first genetic and biochemical work on DNA ligases I, III and IV. I discovered the mam- malian exonucleases DNase III (TREX1) and IV (FEN1). Interestingly, expression of TREXI was altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct O6-methylguanine (O6mG) is repaired without removing the guanine from DNA, identifying a sur- prising mechanism by which the methyl group is transferred to a residue in the repair protein itself. A further novel process of DNA repair discovered by my research group is the action of AlkB as an iron-dependent enzyme carrying out oxidative demethylation.展开更多
Hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios(Hier-ZSM-5-x,where x=50,100,150 and 200)were synthesized using an ordered mesoporous carbon-silica composite as hard template.Hier-ZSM-5-x exhibit...Hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios(Hier-ZSM-5-x,where x=50,100,150 and 200)were synthesized using an ordered mesoporous carbon-silica composite as hard template.Hier-ZSM-5-x exhibits improved mass transport properties,excellent mechanical and hydrothermal stability,and higher catalytic activity than commercial bulk zeolites in the benzyl alcohol self-etherification reaction.Results show that a decrease in the Si/Al ratio in hierarchical single-crystal ZSM-5 zeolites leads to a significant increase in the acidity and the density of micropores,which increases the final catalytic conversion.The effect of porous hierarchy on the diffusion of active sites and the final catalytic activity was also studied by comparing the catalytic conversion after selectively designed poisoned acid sites.These poisoned Hier-ZSM-5-x shows much higher catalytic conversion than the poisoned commercial ZSM-5 zeolite,which indicates that the numerous intracrystalline mesopores significantly reduce the diffusion path of the reactant,leading to the faster diffusion inside the zeolite to contact with the acid sites in the micropores predominating in ZSM-5 zeolites.This study can be extended to develop a series of hierarchical single-crystal zeolites with expected catalytic performance.展开更多
This study described a template-flee method for the synthesis of hierarchically macro-mesoporous Mn- TiO2 catalysts. The promoting effect of Mn doping and the hierarchically macro-mesoporous architecture on TiO2 based...This study described a template-flee method for the synthesis of hierarchically macro-mesoporous Mn- TiO2 catalysts. The promoting effect of Mn doping and the hierarchically macro-mesoporous architecture on TiO2 based catalysts was also investigated for the selective reduction of NO with NH3. The results show that the catalytic performance of TiO2 based catalysts was improved greatly after Mn doping. Meanwhile, the Mn- TiO2 catalyst with the hierarchically macro-mesoporous architecture has a better catalytic activity than that without such an architecture.展开更多
It was ever thought that genomic information is transmitted faithfully from generation to generation. But our current knowledge does not indicate that it is the case. For example, genomic variations can be generated f...It was ever thought that genomic information is transmitted faithfully from generation to generation. But our current knowledge does not indicate that it is the case. For example, genomic variations can be generated from DNA replication infidelity and unequal chromosome segregation. Natural decay of DNA molecules is also a fundamental source of changing genomic information. In addition, cellular and organismal exposure to exogenous genotoxic agents such as ultraviolet (UV) light, oxidative stress, chemical mutagens, and radiation can lead to a variety of modifications on DNA constituents, resulting in genome alterations. Fortunately, cells have evolved several response systems to tackle numerous DNA lesions in order to maintain their genome integrity. Among them, check- point control is probably the most well-known one. For exam- ple, checkpoint responds to replication stress, replication fork stalling, double-strand DNA breaks, and various other types of DNA lesions. Increasing experimental evidence indicates that genomic instability is probably the fundamental reason for carcinogenesis. Genomic instability is also found to be a main etiological factor of neurodegenerative diseases, aging, immunodeficiency, etc. Thus, to understand how cells regulate to maintain their genomic stability is of fundamental importance.展开更多
In DC micro grids and networks,DC-DC power converters having a large number of semiconductor-based power electronic devices are usually adopted to interconnect the renewable sources and flexible loads.Most of the semi...In DC micro grids and networks,DC-DC power converters having a large number of semiconductor-based power electronic devices are usually adopted to interconnect the renewable sources and flexible loads.Most of the semiconductor-based devices suffer from poor fault withstanding abilities,but conventional power electronic protection schemes have the bottlenecks of the time-delay,self-malfunction and mis-judgement.This paper presents a novel solution using the superconducting fault current limiter(SFCL)to protect a power electronic device and extend the usage to a micro grid.This SFCL is actually a self-triggering,recoverable,and passive current limiter,which does not involve any additional circuit hardware and software.Experimental investigations and simulation analyses clarify the feasibility of using this superconductor-based protection scheme to implement the self-acting fail-safe protection of DC-DC converters.Further system-level simulations explore the SFCL to suppress the over-current and stabilize the bus voltage of a photovoltaic based DC micro grid,particularly facing millisecond-level transients and faults.Our experimental and theoretical investigations lay some technical bases to establish a superconductor-semiconductor-coupled interdisciplinary application from the view from the applied superconductivity,to power electronics,and to micro grids.展开更多
文摘Copper based catalysts have high potential for the substituent of noble-metal based catalysts as their high selectivity and moderate activity for selective hydrogenation reaction;however,achieving further high catalytic stability is very difficult.In this work,the carbonization process of Cu-based organic frameworks was explored for the synthesis of highly-dispersed Cu supported by hierarchically porous carbon with high catalytic performance for selective hydrogenation of 1,3-butadiene.The porous hierarchy of carbon support and the dispersion of copper nanoparticles can be precisely tuned by controlling the carbonization process.The resultant catalyst carbonized at 600°C exhibits a rather low reaction temperature at 75°C for 100%butadiene conversion with 100%selectivity to butenes,due to its reasonable porous hierarchy and highly-dispersed copper sites.More importantly,unprecedentedly stability of the corresponding Cu catalyst was firstly observed for selective 1,3-butadiene hydrogenation,with both 100%butadiene conversion and 100%butenes selectivity over 120 h of reaction at 75°C.This study verifies that a simply control the carbonization process of metal organic frameworks can be an effective way to obtain Cu-based catalysts with superior catalytic performance for selective hydrogenation reaction.
基金financially supported by the National Natural Science Foundation of China(U1663225)the Changjiang Scholar Program of Chinese Ministry of Education(IRT15R52)the program of Introducing Talents of Discipline to Universities-Plan 111(B20002)of Ministry of Science and Technology and the Ministry of Education of China and the project “Depollut Air”of Interreg V France-WallonieVlaanderen。
文摘Graphitic carbon nitride(g-C_(3)N_(4))has attracted great interest in photocatalysis and photoelectrocatalysis.However,their poor hydrophilicity poses a great challenge for their applications in aqueous environment.Here,we demonstrate synthesis of a hydrophilic bi-functional hierarchical architecture by the assembly of B-doped g-C_(3)N_(4)nanoplatelets.Such hierarchical B-doped g-C_(3)N_(4)material enables full utilization of their highly enhanced visible light absorption and photogenerated carrier separation in aqueous medium,leading to an excellent photocatalytic H_(2)O_(2)production rate of 4240.3μM g^(-1)h^(-1),2.84,2.64 and 2.13 times higher than that of the bulk g-C_(3)N_(4),g-C_(3)N_(4)nanoplatelets and bulk B doped g-C_(3)N_(4),respectively.Photoanodes based on these hierarchical architectures can generate an unprecedented photocurrent density of 1.72 m A cm^(-2)at 1.23 V under AM 1.5 G illumination for photoelectrochemical water splitting.This work makes a fundamental improvement towards large-scale exploitation of highly active,hydrophilic and stable metal-free g-C_(3)N_(4)photocatalysts for various practical applications.
基金the financial support from the China Scholarship Council(201808310127)Hubei Provincial Department of Education for the“Chutian Scholar”program+2 种基金financially supported by the Foundation of Natural Science(61905159)the National Natural Science Foundation of China(U1663225)Program for Changjiang Scholars and Innovative Research Team(IRT_15R52)the project“Depollut Air”of Interreg V France-Wallonie-Vlaanderen。
基金supported by the National Natural Science Foundation of China(22293022,U20A20122)the Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R52)of the Chinese Ministry of Education+2 种基金the Program of Introducing Talents of Discipline to Universities-Plan 111(B20002)from the Ministry of Science and Technology and the Ministry of Education of Chinasupported by the European Commission Interreg V France-Wallonie-Vlaanderen project“Depollut Air”the Hubei Provincial Department of Education for the“Chutian Scholar”Program
文摘Owing to their facile reactants migration channels,large surface area,maximized exposure of reaction sites and efficient light utilization,three-dimensionally ordered macroporous(3DOM)materials have been extensively adopted in environmental fields such as pollutants removal,environmental detection as well as bacterial disinfection.In this review,the up-to-date 3DOM materials,the corresponding synthesis protocols and the related environmental applications involving photo/electrocatalytic pollutants decomposition,thermocatalytic volatile organic compounds(VOCs)elimination,hazardous substances sensing and bacteria inactivation are completely presented.Simultaneously,the inherent advantages and mechanisms of 3DOM materials in different environmental utilization are thoroughly demonstrated and summarized.Furthermore,the improved performance of environmental applications and the methods of fabricating 3DOM materials are correlated in depth,being favorable for readers to obtain the fundamental knowledge and to motivate some innovative thoughts for modifying 3DOM materials with further elevated environmental remediation capability.Finally,the current difficulties and prospects of 3DOM materials for large-scale and commercial applications are outlooked.This critical review is anticipated to promote the optimization of 3DOM materials and to ripen the related environmental remediation techniques.
文摘I completed my medical studies at the Karolinska Institute in Stockholm but have always been devoted to basic research. My longstanding interest is to understand fundamental DNA repair mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA. I initially measured DNA decay, including rates of base loss and cytosine deamination. I have dis- covered several important DNA repair proteins and determined their mechanisms of action. The discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized for different types of DNA damage. The base excision repair pathway was first reconstituted with human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells, and led the first genetic and biochemical work on DNA ligases I, III and IV. I discovered the mam- malian exonucleases DNase III (TREX1) and IV (FEN1). Interestingly, expression of TREXI was altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct O6-methylguanine (O6mG) is repaired without removing the guanine from DNA, identifying a sur- prising mechanism by which the methyl group is transferred to a residue in the repair protein itself. A further novel process of DNA repair discovered by my research group is the action of AlkB as an iron-dependent enzyme carrying out oxidative demethylation.
基金This work was also financially supported by the National Natural Science Foundation of China(Grant Nos.21671155,U1663225,21805216,21902122)Major programs of technical innovation in Hubei(No.2018AAA012)+1 种基金Hubei Provincial Natural Science Foundation(No.2018CFA054)Postdoctoral Science Foundation of China(No.2019M652723)。
文摘Hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios(Hier-ZSM-5-x,where x=50,100,150 and 200)were synthesized using an ordered mesoporous carbon-silica composite as hard template.Hier-ZSM-5-x exhibits improved mass transport properties,excellent mechanical and hydrothermal stability,and higher catalytic activity than commercial bulk zeolites in the benzyl alcohol self-etherification reaction.Results show that a decrease in the Si/Al ratio in hierarchical single-crystal ZSM-5 zeolites leads to a significant increase in the acidity and the density of micropores,which increases the final catalytic conversion.The effect of porous hierarchy on the diffusion of active sites and the final catalytic activity was also studied by comparing the catalytic conversion after selectively designed poisoned acid sites.These poisoned Hier-ZSM-5-x shows much higher catalytic conversion than the poisoned commercial ZSM-5 zeolite,which indicates that the numerous intracrystalline mesopores significantly reduce the diffusion path of the reactant,leading to the faster diffusion inside the zeolite to contact with the acid sites in the micropores predominating in ZSM-5 zeolites.This study can be extended to develop a series of hierarchical single-crystal zeolites with expected catalytic performance.
基金Acknowledgements This work was carried out in the framework of a program for Changjiang Scholars and Innovative Research Team (IRT_15R52) of the Chinese Ministry of Education. B. L. Su acknowledges the Chinese Central Government for an "Expert of the State" position in the Program of the "Thousand Talents", the Chinese Ministry of Education for a "Changjiang Chaire Professor" position and a Clare Hall Life Membership at the Clare Hall College and the financial support of the Department of Chemistry, University of Cambridge. L.H. CHEN acknowledges Hubei Provincial Department of Education for the "Chutian Scholar" program. This work was also financially supported by the National Natural Science Foundation of China (Grant Nos. 21671155 and U1663225), Scientific Research Foundation for the Returned Oversea Chinese Scholars, State Education Ministry ([2015 ]311), Hubei Provincial Natural Science Founda- tion (2015CFB428).
文摘This study described a template-flee method for the synthesis of hierarchically macro-mesoporous Mn- TiO2 catalysts. The promoting effect of Mn doping and the hierarchically macro-mesoporous architecture on TiO2 based catalysts was also investigated for the selective reduction of NO with NH3. The results show that the catalytic performance of TiO2 based catalysts was improved greatly after Mn doping. Meanwhile, the Mn- TiO2 catalyst with the hierarchically macro-mesoporous architecture has a better catalytic activity than that without such an architecture.
文摘It was ever thought that genomic information is transmitted faithfully from generation to generation. But our current knowledge does not indicate that it is the case. For example, genomic variations can be generated from DNA replication infidelity and unequal chromosome segregation. Natural decay of DNA molecules is also a fundamental source of changing genomic information. In addition, cellular and organismal exposure to exogenous genotoxic agents such as ultraviolet (UV) light, oxidative stress, chemical mutagens, and radiation can lead to a variety of modifications on DNA constituents, resulting in genome alterations. Fortunately, cells have evolved several response systems to tackle numerous DNA lesions in order to maintain their genome integrity. Among them, check- point control is probably the most well-known one. For exam- ple, checkpoint responds to replication stress, replication fork stalling, double-strand DNA breaks, and various other types of DNA lesions. Increasing experimental evidence indicates that genomic instability is probably the fundamental reason for carcinogenesis. Genomic instability is also found to be a main etiological factor of neurodegenerative diseases, aging, immunodeficiency, etc. Thus, to understand how cells regulate to maintain their genomic stability is of fundamental importance.
基金the National Natural Science Foundation of China[Grant No.51807128].
文摘In DC micro grids and networks,DC-DC power converters having a large number of semiconductor-based power electronic devices are usually adopted to interconnect the renewable sources and flexible loads.Most of the semiconductor-based devices suffer from poor fault withstanding abilities,but conventional power electronic protection schemes have the bottlenecks of the time-delay,self-malfunction and mis-judgement.This paper presents a novel solution using the superconducting fault current limiter(SFCL)to protect a power electronic device and extend the usage to a micro grid.This SFCL is actually a self-triggering,recoverable,and passive current limiter,which does not involve any additional circuit hardware and software.Experimental investigations and simulation analyses clarify the feasibility of using this superconductor-based protection scheme to implement the self-acting fail-safe protection of DC-DC converters.Further system-level simulations explore the SFCL to suppress the over-current and stabilize the bus voltage of a photovoltaic based DC micro grid,particularly facing millisecond-level transients and faults.Our experimental and theoretical investigations lay some technical bases to establish a superconductor-semiconductor-coupled interdisciplinary application from the view from the applied superconductivity,to power electronics,and to micro grids.