Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and cli...Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10% for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out.展开更多
Background:Increasing the use of forest harvest residues for bioenergy production reduces greenhouse emissions from the use of fossil fuels.However,it may also reduce carbon stocks and habitats for deadwood dependent ...Background:Increasing the use of forest harvest residues for bioenergy production reduces greenhouse emissions from the use of fossil fuels.However,it may also reduce carbon stocks and habitats for deadwood dependent species.Consequently,simple tools for assessing the trade-offs of alternative management practices on forest dynamics and their services to people are needed.The objectives of this study were to combine mapping and simulation modelling to investigate the effects of forest management on ecosystem services related to carbon cycle in the case of bioenergy production;and to evaluate the suitability of this approach for assessing ecosystem services at the landscape level.Stand level simulations of forest growth and carbon budget were combined with extensive multi-source forest inventory data across a southern boreal landscape in Finland.Stochastic changes in the stand age class distribution over the study region were simulated to mimic variation in management regimes.Results:The mapping framework produced reasonable estimates of the effects of forest management on a set of key ecosystem service indicators:the annual carbon stocks and fluxes of forest biomass and soil,timber and energy-wood production and the coarse woody litter production over a simulation period 2012–2100.Regular harvesting,affecting the stand age class distribution,was a key driver of the carbon stock changes at a landscape level.Extracting forest harvest residues in the final felling caused carbon loss from litter and soil,particularly with combined aboveground residue and stump harvesting.It also reduced the annual coarse woody litter production,demonstrating negative impacts on deadwood abundance and,consequently,forest biodiversity.Conclusions:The refined mapping framework was suitable for assessing ecosystem services at the landscape level.The procedure contributes to bridging the gap between ecosystem service mapping and detailed simulation modelling in boreal forests.It allows for visualizing ecosystem services as fine resolution maps to support sustainable land use planning.In the future,more detailed models and a wider variety of ecosystem service indicators could be added to develop the method.展开更多
In order to explore the regional variability of the effects of land use systems on soil properties, Shouyang County in Shanxi Province and Danling County in Sichuan Province of China were selected as the study areas. ...In order to explore the regional variability of the effects of land use systems on soil properties, Shouyang County in Shanxi Province and Danling County in Sichuan Province of China were selected as the study areas. Field soil samples of the four land use systems (natural forest, forest plantation, shrubland, and cropland) were collected, respectively, from the two areas. The general statistical tools were used to analyze soil data. The results showed that the influence of land use systems on soil properties was significant. In general, soils in slightly human-disturbed land use systems presented a higher fertility level than those in strongly human-disturbed land use systems in both areas. Furthermore, the impacts of the same land use systems on soil properties showed a distinct regional variability, and even in the same land use system, different farming systems and site management measures (such as irrigation, fertilization, and pesticides) could also lead to the regional heterogeneity in soil properties. The regional variability of land use effects on soil properties reveals the regional variability of the effects of human activities on environmental changes, and could explain the complex relationship between humans and the natural environment in certain ways.展开更多
Various paleoclimate records have shown that the Asian monsoon was punctuated by numerous suborbital time-scale events, and these events were coeval with those that happened in the North Atlantic. This study investiga...Various paleoclimate records have shown that the Asian monsoon was punctuated by numerous suborbital time-scale events, and these events were coeval with those that happened in the North Atlantic. This study investigates the Asian summer monsoon responses to the Atlantic Ocean forcing by applying an additional freshwater flux into the North Atlantic. The simulated results indicate that the cold North Atlantic and warm South Atlantic induced by the weakened Atlantic thermohaline circulation (THC) due to the freshwater flux lead to significantly suppressed Asian summer monsoon. The authors analyzed the detailed processes of the Atlantic Ocean forcing on the Asian summer monsoon, and found that the atmospheric teleconnection in the eastern and central North Pacific and the atmosphere-ocean interaction in the tropical North Pacific play the most crucial role. Enhanced precipitation in the subtropical North Pacific extends the effects of Atlantic Ocean forcing from the eastern Pacific into the western Pacific, and the atmosphere-ocean interaction in the tropical Pacific and Indian Ocean intensifies the circulation and precipitation anomalies in the Pacific and East Asia.展开更多
Leaf area index (LAI) is an important parameter in a number of models related to ecosystem functioning, carbon budgets, climate, hydrology, and crop growth simulation. Mapping and monitoring the spatial and temporal...Leaf area index (LAI) is an important parameter in a number of models related to ecosystem functioning, carbon budgets, climate, hydrology, and crop growth simulation. Mapping and monitoring the spatial and temporal variations of LAI are necessary for understanding crop growth and development at regional level. In this study, the relationships between LAI of winter wheat and Landsat TM spectral vegetation indices (SVIs) were analyzed by using the curve estimation procedure in North China Plain. The series of LAI maps retrieved by the best regression model were used to assess the spatial and temporal variations of winter wheat LAI. The results indicated that the general relationships between LAI and SVIs were curvilinear, and that the exponential model gave a better fit than the linear model or other nonlinear models for most SVIs. The best regression model was constructed using an exponential model between surface-reflectance-derived difference vegetation index (DVI) and LAI, with the adjusted R2 (0.82) and the RMSE (0.77). The TM LAI maps retrieved from DVILAI model showed the significant spatial and temporal variations. The mean TM LAI value (30 m) for winter wheat of the study area increased from 1.29 (March 7, 2004) to 3.43 (April 8, 2004), with standard deviations of 0.22 and 1.17, respectively. In conclusion, spectral vegetation indices from multi-temporal Landsat TM images can be used to produce fine-resolution LAI maps for winter wheat in North China Plain.展开更多
The effects of street bottom heating and inflow turbulence on urbanstreet-canyon flow are experimentally investigated using a circulating water channel. Threeexperiments are carried out for a street canyon with a stre...The effects of street bottom heating and inflow turbulence on urbanstreet-canyon flow are experimentally investigated using a circulating water channel. Threeexperiments are carried out for a street canyon with a street aspect ratio of 1. Results from eachexperiment with bottom heating or inflow turbulence are compared with those without bottom heatingand appreciable inflow turbulence. It is demonstrated that street bottom heating or inflowturbulence increases the intensity of the canyon vortex. A possible explanation on how street bottomheating or inflow turbulence intensifies the canyon vortex is given from a fluid dynamicalviewpoint.展开更多
A high resolution nonhydrostatic tropical atmospheric model is developed by using a ready-made regional atmospheric modeling system. The motivation is to investigate the convective activities associated with the tropi...A high resolution nonhydrostatic tropical atmospheric model is developed by using a ready-made regional atmospheric modeling system. The motivation is to investigate the convective activities associated with the tropical intraseasonal oscillation (ISO) through a cloud resolving calculation. Due to limitations in computing resources, a展开更多
Satellite observations of SSTs have revealed the existence of unstable waves in the equatorial eastern Pacific and Atlantic oceans. These waves have a 20-40-day periodicity with westward phase speeds of 0.4-0.6 m s^-1...Satellite observations of SSTs have revealed the existence of unstable waves in the equatorial eastern Pacific and Atlantic oceans. These waves have a 20-40-day periodicity with westward phase speeds of 0.4-0.6 m s^-1 and wavelengths of 1000-2000 km during boreal summer and fall. They are generally called tropical instability waves (TIWs). This study investigates TIWs simulated by a high-resolution coupled atmosphere-ocean general circulation model (AOGCM). The horizontal resolution of the model is 120 km in the atmosphere, and 30 km longitude by 20 km latitude in the ocean. Model simulations show good agreement with the observed main features associated with TIWs. The results of energetics analysis reveal that barotropic energy conversion is responsible for providing the main energy source for TIWs by extracting energy from the meridional shear of the climatological-mean equatorial currents in the mixed layer. This deeper and northward-extended wave activity appears to gain its energy through baroclinic conversion via buoyancy work, which further contributes to the asymmetric distribution of TIWs. It is estimated that the strong cooling effect induced by equatorial upwelling is partially (-30%-40%) offset by the equatorward heat flux due to TIWs in the eastern tropical Pacific during the seasons when TIWs are active. The atmospheric mixed layer just above the sea surface responds to the waves with enhanced or reduced vertical mixing. Furthermore, the changes in turbulent mixing feed back to sea surface evaporation, favoring the westward propagation of TIWs. The atmosphere to the south of the Equator also responds to TIWs in a similar way, although TIWs are much weaker south of the Equator.展开更多
Multiple equilibria and their stability in tropical atmosphere are investigated through β-plane barotropic models with consideration of heating and dissipation. We have derived the solutions of the model equations co...Multiple equilibria and their stability in tropical atmosphere are investigated through β-plane barotropic models with consideration of heating and dissipation. We have derived the solutions of the model equations corresponding to the multiple equilibria or the steady flows first, and then establish the criteria for the stability of steady flow by use of the Liapunov direct Method. When these criteria are applied to the solutions of equilibria obtained, stable flows, which are closely related to the different patterns of quasi-stationary circulation in the tropical region, are lbund. The configurations of these stable flows and the shift between two of them as season changes provide quite reasonable explanations to many fundarnental problems of tropical circulation features such as the catastrophe mechanism of the onset and the break-active cycle of the Asian summer monsoon. It fbllows that the onset or the abrupt transition of the Asian summer monsoon could be attributed to the multiple equilibrium property of the tropical circulation resulted from the advcetive nonlinearity, which provide another explanation among others.展开更多
We integrated Enviro-HIRLAM(Environment-High Resolution Limited Area Model)meteorological output into FLEXPART(FLEXible PARTicle dispersion model).A FLEXPART simulation requires meteorological input from a numerical w...We integrated Enviro-HIRLAM(Environment-High Resolution Limited Area Model)meteorological output into FLEXPART(FLEXible PARTicle dispersion model).A FLEXPART simulation requires meteorological input from a numerical weather prediction(NWP)model.The publicly available version of FLEXPART can utilize either ECMWF(European Centre for Medium-range Weather Forecasts)Integrated Forecast System(IFS)forecast or reanalysis NWP data,or NCEP(U.S.National Center for Environmental Prediction)Global Forecast System(GFS)forecast or reanalysis NWP data.The primary benefits of using Enviro-HIRLAM are that it runs at a higher resolution and accounts for aerosol effects in meteorological fields.We compared backward trajectories gener-ated with FLEXPART using Enviro-HIRLAM(both with and without aerosol effects)to trajectories generated using NCEP GFS and ECMWF IFS meteorological inputs,for a case study of a heavy haze event which occurred in Beijing,China in November 2018.We found that results from FLEXPART were considerably different when using different meteorological inputs.When aerosol effects were included in the NWP,there was a small but noticeable differ-ence in calculated trajectories.Moreover,when looking at potential emission sensitivity instead of simply expressing trajectories as lines,additional information,which may have been missed when looking only at trajectories as lines,can be inferred.展开更多
The Pan-Eurasian Experiment Modelling Platform(PEEX-MP)is one of the key blocks of the PEEX Research Programme.The PEEX MP has more than 30 models and is directed towards seamless envir-onmental prediction.The main fo...The Pan-Eurasian Experiment Modelling Platform(PEEX-MP)is one of the key blocks of the PEEX Research Programme.The PEEX MP has more than 30 models and is directed towards seamless envir-onmental prediction.The main focus area is the Arctic-boreal regions and China.The models used in PEEX-MP cover several main components of the Earth’s system,such as the atmosphere,hydrosphere,pedosphere and biosphere,and resolve the physicalchemicalbiological processes at different spatial and temporal scales and resolutions.This paper introduces and discusses PEEX MP multi-scale modelling concept for the Earth system,online integrated,forward/inverse,and socioeconomical modelling,and other approaches with a particular focus on applications in the PEEX geographical domain.The employed high-performance com-puting facilities,capabilities,and PEEX dataflow for modelling results are described.Several virtual research platforms(PEEXView,Virtual Research Environment,Web-based Atlas)for handling PEEX modelling and observational results are introduced.The over-all approach allows us to understand better physical-chemicalbiological processes,Earth’s system interactions and feedbacks and to provide valuable information for assessment studies on evaluating risks,impact,consequences,etc.for population,envir-onment and climate in the PEEX domain.This work was also one of the last projects of Prof.Sergej Zilitinkevich,who passed away on 15 February 2021.Since the finalization took time,the paper was actually submitted in 2023 and we could not argue that the final paper text was agreed with him.展开更多
基金funded by the National 973 Program of China (2012CB955904)the National Natural Science Foundation of China (31171452)the Sustainable Agriculture Innovation Network initiated and funded by Defra UK and Minstry of Agriculture of China (H5105000)
文摘Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10% for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out.
基金supported by Maj and Tor Nessling Foundation through the grant “Coupling carbon sequestration of forests and croplands with ecosystem service assessments”(decision No. 201700251)LIFE+financial instrument of the European Union (LIFE12 ENV/FI/000409, MONIMET)+1 种基金the Academy of Finland Strategic Research Council project (SRC 2017/312559 IBC-CARBON)supported by the Academy of Finland through the grant “Trade-offs and synergies in land-based climate change mitigation and biodiversity conservation”(decision No. 322066)
文摘Background:Increasing the use of forest harvest residues for bioenergy production reduces greenhouse emissions from the use of fossil fuels.However,it may also reduce carbon stocks and habitats for deadwood dependent species.Consequently,simple tools for assessing the trade-offs of alternative management practices on forest dynamics and their services to people are needed.The objectives of this study were to combine mapping and simulation modelling to investigate the effects of forest management on ecosystem services related to carbon cycle in the case of bioenergy production;and to evaluate the suitability of this approach for assessing ecosystem services at the landscape level.Stand level simulations of forest growth and carbon budget were combined with extensive multi-source forest inventory data across a southern boreal landscape in Finland.Stochastic changes in the stand age class distribution over the study region were simulated to mimic variation in management regimes.Results:The mapping framework produced reasonable estimates of the effects of forest management on a set of key ecosystem service indicators:the annual carbon stocks and fluxes of forest biomass and soil,timber and energy-wood production and the coarse woody litter production over a simulation period 2012–2100.Regular harvesting,affecting the stand age class distribution,was a key driver of the carbon stock changes at a landscape level.Extracting forest harvest residues in the final felling caused carbon loss from litter and soil,particularly with combined aboveground residue and stump harvesting.It also reduced the annual coarse woody litter production,demonstrating negative impacts on deadwood abundance and,consequently,forest biodiversity.Conclusions:The refined mapping framework was suitable for assessing ecosystem services at the landscape level.The procedure contributes to bridging the gap between ecosystem service mapping and detailed simulation modelling in boreal forests.It allows for visualizing ecosystem services as fine resolution maps to support sustainable land use planning.In the future,more detailed models and a wider variety of ecosystem service indicators could be added to develop the method.
文摘In order to explore the regional variability of the effects of land use systems on soil properties, Shouyang County in Shanxi Province and Danling County in Sichuan Province of China were selected as the study areas. Field soil samples of the four land use systems (natural forest, forest plantation, shrubland, and cropland) were collected, respectively, from the two areas. The general statistical tools were used to analyze soil data. The results showed that the influence of land use systems on soil properties was significant. In general, soils in slightly human-disturbed land use systems presented a higher fertility level than those in strongly human-disturbed land use systems in both areas. Furthermore, the impacts of the same land use systems on soil properties showed a distinct regional variability, and even in the same land use system, different farming systems and site management measures (such as irrigation, fertilization, and pesticides) could also lead to the regional heterogeneity in soil properties. The regional variability of land use effects on soil properties reveals the regional variability of the effects of human activities on environmental changes, and could explain the complex relationship between humans and the natural environment in certain ways.
基金the National Natural Science Foundation of China (GrantNos. 40221503 and 40523001)the EU EN-SEMBLES (GOCE-CT-2003-505539)DYNAMITE(003903-GOCE) projects at the National Centre for Atmo-spheric Science. We would like to thank Jonathan Gregoryfor performing the coupled model simulations in the Hadley Centre for Climate Prediction and Research and for mak-ing them available to us, and to thank the two anonymous reviewers for their constructive comments.
文摘Various paleoclimate records have shown that the Asian monsoon was punctuated by numerous suborbital time-scale events, and these events were coeval with those that happened in the North Atlantic. This study investigates the Asian summer monsoon responses to the Atlantic Ocean forcing by applying an additional freshwater flux into the North Atlantic. The simulated results indicate that the cold North Atlantic and warm South Atlantic induced by the weakened Atlantic thermohaline circulation (THC) due to the freshwater flux lead to significantly suppressed Asian summer monsoon. The authors analyzed the detailed processes of the Atlantic Ocean forcing on the Asian summer monsoon, and found that the atmospheric teleconnection in the eastern and central North Pacific and the atmosphere-ocean interaction in the tropical North Pacific play the most crucial role. Enhanced precipitation in the subtropical North Pacific extends the effects of Atlantic Ocean forcing from the eastern Pacific into the western Pacific, and the atmosphere-ocean interaction in the tropical Pacific and Indian Ocean intensifies the circulation and precipitation anomalies in the Pacific and East Asia.
文摘Leaf area index (LAI) is an important parameter in a number of models related to ecosystem functioning, carbon budgets, climate, hydrology, and crop growth simulation. Mapping and monitoring the spatial and temporal variations of LAI are necessary for understanding crop growth and development at regional level. In this study, the relationships between LAI of winter wheat and Landsat TM spectral vegetation indices (SVIs) were analyzed by using the curve estimation procedure in North China Plain. The series of LAI maps retrieved by the best regression model were used to assess the spatial and temporal variations of winter wheat LAI. The results indicated that the general relationships between LAI and SVIs were curvilinear, and that the exponential model gave a better fit than the linear model or other nonlinear models for most SVIs. The best regression model was constructed using an exponential model between surface-reflectance-derived difference vegetation index (DVI) and LAI, with the adjusted R2 (0.82) and the RMSE (0.77). The TM LAI maps retrieved from DVILAI model showed the significant spatial and temporal variations. The mean TM LAI value (30 m) for winter wheat of the study area increased from 1.29 (March 7, 2004) to 3.43 (April 8, 2004), with standard deviations of 0.22 and 1.17, respectively. In conclusion, spectral vegetation indices from multi-temporal Landsat TM images can be used to produce fine-resolution LAI maps for winter wheat in North China Plain.
文摘The effects of street bottom heating and inflow turbulence on urbanstreet-canyon flow are experimentally investigated using a circulating water channel. Threeexperiments are carried out for a street canyon with a street aspect ratio of 1. Results from eachexperiment with bottom heating or inflow turbulence are compared with those without bottom heatingand appreciable inflow turbulence. It is demonstrated that street bottom heating or inflowturbulence increases the intensity of the canyon vortex. A possible explanation on how street bottomheating or inflow turbulence intensifies the canyon vortex is given from a fluid dynamicalviewpoint.
文摘A high resolution nonhydrostatic tropical atmospheric model is developed by using a ready-made regional atmospheric modeling system. The motivation is to investigate the convective activities associated with the tropical intraseasonal oscillation (ISO) through a cloud resolving calculation. Due to limitations in computing resources, a
基金supported by the Postdoctoral Fellow ship given by the Japan Society for the Promotion of Sciencesupported by the Kyousei and Kakushin Projects of the ministry of Education, Culture,Sports, Science, and Technology of Japan, the Core Research for Evolutional Science and Technology of the Japan Science and Technology Agencythe National Basic Research Program of China (Grant No. 2006CB403606)
文摘Satellite observations of SSTs have revealed the existence of unstable waves in the equatorial eastern Pacific and Atlantic oceans. These waves have a 20-40-day periodicity with westward phase speeds of 0.4-0.6 m s^-1 and wavelengths of 1000-2000 km during boreal summer and fall. They are generally called tropical instability waves (TIWs). This study investigates TIWs simulated by a high-resolution coupled atmosphere-ocean general circulation model (AOGCM). The horizontal resolution of the model is 120 km in the atmosphere, and 30 km longitude by 20 km latitude in the ocean. Model simulations show good agreement with the observed main features associated with TIWs. The results of energetics analysis reveal that barotropic energy conversion is responsible for providing the main energy source for TIWs by extracting energy from the meridional shear of the climatological-mean equatorial currents in the mixed layer. This deeper and northward-extended wave activity appears to gain its energy through baroclinic conversion via buoyancy work, which further contributes to the asymmetric distribution of TIWs. It is estimated that the strong cooling effect induced by equatorial upwelling is partially (-30%-40%) offset by the equatorward heat flux due to TIWs in the eastern tropical Pacific during the seasons when TIWs are active. The atmospheric mixed layer just above the sea surface responds to the waves with enhanced or reduced vertical mixing. Furthermore, the changes in turbulent mixing feed back to sea surface evaporation, favoring the westward propagation of TIWs. The atmosphere to the south of the Equator also responds to TIWs in a similar way, although TIWs are much weaker south of the Equator.
基金National Natural Science Foundation of China (40275011 40545019) South China Sea Monsoon Experimentproject
文摘Multiple equilibria and their stability in tropical atmosphere are investigated through β-plane barotropic models with consideration of heating and dissipation. We have derived the solutions of the model equations corresponding to the multiple equilibria or the steady flows first, and then establish the criteria for the stability of steady flow by use of the Liapunov direct Method. When these criteria are applied to the solutions of equilibria obtained, stable flows, which are closely related to the different patterns of quasi-stationary circulation in the tropical region, are lbund. The configurations of these stable flows and the shift between two of them as season changes provide quite reasonable explanations to many fundarnental problems of tropical circulation features such as the catastrophe mechanism of the onset and the break-active cycle of the Asian summer monsoon. It fbllows that the onset or the abrupt transition of the Asian summer monsoon could be attributed to the multiple equilibrium property of the tropical circulation resulted from the advcetive nonlinearity, which provide another explanation among others.
基金the Jenny and Antti Wihuri Foundation project,with the grant for“Air pollution cocktail in Gigacity”Funding was also received from the Research Council of Finland(formerly the Academy of Finland,AoF)project 311932 and applied towards this project+1 种基金Partially,funding included contribution from EU Horizon 2020 CRiceS project“Climate relevant interactions and feedbacks:the key role of sea ice and snow in the polar and global climate system”under grant agreement No 101003826and AoF project ACCC“The Atmosphere and Climate Competence Center”under grant agreement No 337549.
文摘We integrated Enviro-HIRLAM(Environment-High Resolution Limited Area Model)meteorological output into FLEXPART(FLEXible PARTicle dispersion model).A FLEXPART simulation requires meteorological input from a numerical weather prediction(NWP)model.The publicly available version of FLEXPART can utilize either ECMWF(European Centre for Medium-range Weather Forecasts)Integrated Forecast System(IFS)forecast or reanalysis NWP data,or NCEP(U.S.National Center for Environmental Prediction)Global Forecast System(GFS)forecast or reanalysis NWP data.The primary benefits of using Enviro-HIRLAM are that it runs at a higher resolution and accounts for aerosol effects in meteorological fields.We compared backward trajectories gener-ated with FLEXPART using Enviro-HIRLAM(both with and without aerosol effects)to trajectories generated using NCEP GFS and ECMWF IFS meteorological inputs,for a case study of a heavy haze event which occurred in Beijing,China in November 2018.We found that results from FLEXPART were considerably different when using different meteorological inputs.When aerosol effects were included in the NWP,there was a small but noticeable differ-ence in calculated trajectories.Moreover,when looking at potential emission sensitivity instead of simply expressing trajectories as lines,additional information,which may have been missed when looking only at trajectories as lines,can be inferred.
基金the last projects of Prof.Sergej Zilitinkevich(1936-2021)The financial support was/is provided through multiple projects related to the Pan-Eurasian EXperiment(PEEX)programme including Academy of Finland projects-ClimEco(grant#314798/799)+6 种基金ACCC(grant#337549)HEATCOST(grant#334798)European Union’s Horizon 2020 Programme projects-iCUPE under ERA-PLANET(grant#689443),INTAROS(grant#727890),EXHAUSTION(grant#820655),CRiceS(grant#101003826),RI-URBANS(grant#101036245)Horizon Europe project FOCI(grant#101056783)Erasmus+Programme projects-ECOIMPACT(grant#561975-EPP-1-2015-1-FI-EPPKA2-CBHE-JP),ClimEd(grant#619285-EPP-1-2020-1-FIEPPKA2-CBHE-JP)The Norwegian Research Council INTPART educational and networking project(322317/H30):URban Sustainability in Action:Multi-disciplinary Approach through Jointly Organized Research schoolsand the EEA project(Contract No.2020TO01000219):Turbulent-resolving urban modelling of air quality and thermal comfort(TURBAN).
文摘The Pan-Eurasian Experiment Modelling Platform(PEEX-MP)is one of the key blocks of the PEEX Research Programme.The PEEX MP has more than 30 models and is directed towards seamless envir-onmental prediction.The main focus area is the Arctic-boreal regions and China.The models used in PEEX-MP cover several main components of the Earth’s system,such as the atmosphere,hydrosphere,pedosphere and biosphere,and resolve the physicalchemicalbiological processes at different spatial and temporal scales and resolutions.This paper introduces and discusses PEEX MP multi-scale modelling concept for the Earth system,online integrated,forward/inverse,and socioeconomical modelling,and other approaches with a particular focus on applications in the PEEX geographical domain.The employed high-performance com-puting facilities,capabilities,and PEEX dataflow for modelling results are described.Several virtual research platforms(PEEXView,Virtual Research Environment,Web-based Atlas)for handling PEEX modelling and observational results are introduced.The over-all approach allows us to understand better physical-chemicalbiological processes,Earth’s system interactions and feedbacks and to provide valuable information for assessment studies on evaluating risks,impact,consequences,etc.for population,envir-onment and climate in the PEEX domain.This work was also one of the last projects of Prof.Sergej Zilitinkevich,who passed away on 15 February 2021.Since the finalization took time,the paper was actually submitted in 2023 and we could not argue that the final paper text was agreed with him.