期刊文献+
共找到233篇文章
< 1 2 12 >
每页显示 20 50 100
The Role of Underlying Boundary Forcing in Shaping the Recent Decadal Change of Persistent Anomalous Activity over the Ural Mountains
1
作者 Ting LEI Shuanglin LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1496-1510,1661-1667,共22页
Observational analyses demonstrate that the Ural persistent positive height anomaly event(PAE) experienced a decadal increase around the year 2000, exhibiting a southward displacement afterward. These decadal variatio... Observational analyses demonstrate that the Ural persistent positive height anomaly event(PAE) experienced a decadal increase around the year 2000, exhibiting a southward displacement afterward. These decadal variations are related to a large-scale circulation shift over the Eurasian Continent. The effects of underlying sea ice and sea surface temperature(SST) anomalies on the Ural PAE and the related atmospheric circulation were explored by Atmospheric Model Intercomparison Project(AMIP) experiments from the Coupled Model Intercomparison Project Phase 6 and by sensitivity experiments using the Atmospheric General Circulation Model(AGCM). The AMIP experiment results suggest that the underlying sea ice and SST anomalies play important roles. The individual contributions of sea ice loss in the Barents-Kara Seas and the SST anomalies linked to the phase transition of the Pacific Decadal Oscillation(PDO) and Atlantic Multidecadal Oscillation(AMO) are further investigated by AGCM sensitivity experiments isolating the respective forcings.The sea ice decline in Barents-Kara Seas triggers an atmospheric wave train over the Eurasian mid-to-high latitudes with positive anomalies over the Urals, favoring the occurrence of Ural PAEs. The shift in the PDO to its negative phase triggers a wave train propagating downstream from the North Pacific. One positive anomaly lobe of the wave train is located over the Ural Mountains and increases the PAE there. The negative-to-positive transition of the AMO phase since the late-1990s causes positive 500-h Pa height anomalies south of the Ural Mountains, which promote a southward shift of Ural PAE. 展开更多
关键词 Ural persistent anomaly Pacific decadal oscillation Atlantic multidecadal oscillation sea ice loss in Barents-Kara Seas
下载PDF
Interannual and Decadal Changes in Tropospheric Ozone in China and the Associated Chemistry–Climate Interactions: A Review 被引量:29
2
作者 Yu FU Hong LIAO Yang YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第9期975-993,共19页
China has been experiencing widespread air pollution due to rapid industrialization and urbanization in recent decades.The two major concerns of ambient air quality in China are particulate matter(PM)and tropospheric ... China has been experiencing widespread air pollution due to rapid industrialization and urbanization in recent decades.The two major concerns of ambient air quality in China are particulate matter(PM)and tropospheric ozone(O3).With the implementation of air pollution prevention and control actions in the last five years,the PM pollution in China has been substantially reduced.In contrast,under the conditions of the urban air pollution complex,the elevated O3 levels in city clusters of eastern China,especially in warm seasons,have drawn increasing attention.Emissions of air pollutants and their precursors not only contribute to regional air quality,but also alter climate.Climate change in turn can change chemical processes,long-range transport,and local meteorology that influence air pollution.Compared to PM,less is known about O3 pollution and its climate effects over China.Here,we present a review of the main findings from the literature over the period 2011-18 with regard to the characteristics of O3 concentrations in China and the mechanisms that drive its interannual to decadal variations,aiming to identify robust conclusions that may guide decision-making for emissions control and to highlight critical knowledge gaps.We also review regional and global modeling studies that have investigated the impacts of tropospheric O3 on climate,as well as the projections of future tropospheric O3 owing to climate and/or emission changes. 展开更多
关键词 TROPOSPHERIC ozone chemistry-climate INTERACTIONS INTERANNUAL and DECADAL variations China
下载PDF
A Review of Seasonal Climate Prediction Research in China 被引量:23
3
作者 WANG Huijun FAN Ke +9 位作者 SUN Jianqi LI Shuanglin LIN Zhaohui ZHOU Guangqing CHEN Lijuan LANG Xianmei LI Fang ZHU Yali CHEN Hong ZHENG Fei 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第2期149-168,共20页
The ultimate goal of climate research is to produce climate predictions on various time scales. In China, efforts to predict the climate started in the 1930 s. Experimental operational climate forecasts have been perf... The ultimate goal of climate research is to produce climate predictions on various time scales. In China, efforts to predict the climate started in the 1930 s. Experimental operational climate forecasts have been performed since the late 1950 s,based on historical analog circulation patterns. However, due to the inherent complexity of climate variability, the forecasts produced at that time were fairly inaccurate. Only from the late 1980 s has seasonal climate prediction experienced substantial progress, when the Tropical Ocean and Global Atmosphere project of the World Climate Research program(WCRP) was launched. This paper, following a brief description of the history of seasonal climate prediction research, provides an overview of these studies in China. Processes and factors associated with the climate variability and predictability are discussed based on the literature published by Chinese scientists. These studies in China mirror aspects of the climate research effort made in other parts of the world over the past several decades, and are particularly associated with monsoon research in East Asia. As the climate warms, climate extremes, their frequency, and intensity are projected to change, with a large possibility that they will increase. Thus, seasonal climate prediction is even more important for China in order to effectively mitigate disasters produced by climate extremes, such as frequent floods, droughts, and the heavy frozen rain events of South China. 展开更多
关键词 seasonal prediction climate variability PREDICTABILITY
下载PDF
Regional-scale Surface Air Temperature and East Asian Summer Monsoon Changes during the Last Millennium Simulated by the FGOALS-gl Climate System Model 被引量:12
4
作者 MAN Wenmin ZHOU Tianjun 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第4期765-778,共14页
The spatial patterns and regional-scale surface air temperature (SAT) changes during the last millennium,as well as the variability of the East Asian summer monsoon (EASM) were simulated with a low-resolution vers... The spatial patterns and regional-scale surface air temperature (SAT) changes during the last millennium,as well as the variability of the East Asian summer monsoon (EASM) were simulated with a low-resolution version of Flexible Global Ocean-Atmosphere-Land-Sea-ice (FGOALS-gl) model.The model was driven by both natural and anthropogenic forcing agents.Major features of the simulated past millennial Northern Hemisphere (NH) mean SAT variations,including the Medieval Climate Anomaly (MCA),the Little Ice Age (LIA) and the 20th Century Warming (20CW),were generally consistent with the reconstructions.The simulated MCA showed a global cooling pattern with reference to the 1961-90 mean conditions,indicating the 20CW to be unprecedented over the last millennium in the simulation.The LIA was characterized by pronounced coldness over the continental extratropical NH in both the reconstruction and the simulation.The simulated global mean SAT difference between the MCA and LIA was 0.14°C,with enhanced warming over high-latitude NH continental regions.Consistencies between the simulation and the reconstruction on regional scales were lower than those on hemispheric scales.The major features agreed well between the simulated and reconstructed SAT variations over the Chinese domain,despite some inconsistency in details among different reconstructions.The EASM circulation during the MCA was stronger than that during the LIA The corresponding rainfall anomalies exhibited excessive rainfall in the north but deficient rainfall in the south.Both the zonal and meridional thermal contrast were enhanced during the MCA.This temperature anomaly pattern favored a stronger monsoon circulation. 展开更多
关键词 last millennium surface air temperature spatial patterns regional-scale variation East Asian summer monsoon
下载PDF
Asian climate change under 1.5-4 ℃ warming targets 被引量:11
5
作者 XU Ying ZHOU Bo-Tao +3 位作者 WU Jie HAN Zhen-Yu ZHANG Yong-Xiang WU Jia 《Advances in Climate Change Research》 SCIE CSCD 2017年第2期99-107,共9页
Based on simulations of 18 CMIP5 models under three RCP scenarios, this article investigates changes in mean temperature and precipitation and their extremes over Asia in the context of global warming targets of 1.5-4... Based on simulations of 18 CMIP5 models under three RCP scenarios, this article investigates changes in mean temperature and precipitation and their extremes over Asia in the context of global warming targets of 1.5-4 ℃, and further compares the differences between 1.5 ℃ and 2 ℃ targets. Results show that relative to the pre-industrial era, the mean temperature over Asia increases by 2.3 ℃, 3.0 ℃, 4.6 ℃, and 6.0 ℃ at warming targets of 1.5 ℃, 2 ℃, 3 ℃, and 4 ℃, respectively, with stronger warming in high latitudes than in low latitudes. The corresponding enhancement in mean precipitation over the entire Asian region is 4.4%, 5.8%, 10.2%, and 13.0%, with significant regional differences. In addition, an increase in warm extremes, a decrease in cold extremes, and a strengthening in the variability of amounts of extreme precipitation are projected. Under the 1.5 ℃ target, compared with the climate under the 2 ℃ target, the mean temperature will be lower by 0.5-1 ℃ over Asia; the mean precipitation will be less by 5%-20% over most of Asia, but will be greater by about 10%-15% over West Asia and western South Asia; extreme high temperatures will be uniformly cooler throughout the Asian region, and the warming in extreme low temperatures will decrease significantly in high latitudes of Asia; extreme precipitation will be weaker over most of Asia but will be stronger over West Asia and western South Asia. Under the 1.5 ℃ and 2 ℃ warming targets, the probability of very hot weather (anomalies greater than 1σ, σ is standard deviation), extremely hot weather (anomalies greater than 3or), and extremely heavy precipitation (anomalies greater than 3σ) occurring will increase by at least once, 10%, and 10%, respectively, compared to the reference period (1861-1900). 展开更多
关键词 Global climate model CMIP5 Warming target Climate extreme Climate change
下载PDF
Potential Impact of Future Climate Change on Crop Yield in Northeastern China 被引量:6
6
作者 ZHOU Mengzi WANG Huijun 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第7期889-897,共9页
We evaluated the potential impact of future climate change on spring maize and single-crop rice in northeastern China (NEC) by employing climate and crop models. Based on historical data, diurnal temperature change ... We evaluated the potential impact of future climate change on spring maize and single-crop rice in northeastern China (NEC) by employing climate and crop models. Based on historical data, diurnal temperature change exhibited a distinct negative relationship with maize yield, whereas minimum temperature correlated positively to rice yield. Corresponding to the evaluated climate change derived from coupled climate models included in the Coupled Model Intercomparison Project Phase 5 (CMIP5) under the Representative Concentration Pathway 4.5 scenario (RCP4.5), the projected maize yield changes for three future periods [2010-39 (period 1), 2040-69 (period 2), and 2070-99 (period 3)] relative to the mean yield in the baseline period (1976-2005) were 2.92%, 3.11% and 2.63%, respectively. By contrast, the evaluated rice yields showed slightly larger increases of 7.19%, 12.39%, and 14.83%, respectively. The uncertainties in the crop response are discussed by considering the uncertainties obtained from both the climate and the crop models. The range of impact of the uncertainty became markedly wider when integrating these two sources of uncertainty. The probabilistic assessments of the evaluated change showed maize yield to be relatively stable from period 1 to period 3, while the rice yield showed an increasing trend over time. The results presented in this paper suggest a tendency of the yields of maize and rice in NEC to increase (but with great uncertainty) against the background of global warming, which may offer some valuable guidance to government policymakers. 展开更多
关键词 northeastern China statistical crop models climate models PROJECTION UNCERTAINTY
下载PDF
Regional Climate Change and Uncertainty Analysis based on Four Regional Climate Model Simulations over China 被引量:10
7
作者 WU Jia GAO Xue-Jie +1 位作者 XU Yin-Long PAN Jie 《Atmospheric and Oceanic Science Letters》 CSCD 2015年第3期147-152,共6页
Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The loc... Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The locus of the study was on the ensemble projection of cli- mate change in the mid-21st century (2031-50) over China. Validation of each simulation and the ensemble average showed good performances of the models overall, as well as advantages of the ensemble in reproducing present day (1981 2000) December-February (DJF), June-August (JJA), and annual (ANN) mean temperature and precipitation. Significant wanning was projected for the mid-21st century, with larger values of temperature increase found in the northern part of China and in the cold seasons. The ensemble average changes of precipitation in DJF, JJA, and ANN were determined, and the uncertainties of the projected changes analyzed based on the consistencies of the simulations. It was concluded that the largest uncertainties in precipitation projection are in eastern China during the summer season (monsoon pre-cipitation). 展开更多
关键词 climate change regional climate model ENSEMBLE China
下载PDF
Projected changes in mean and extreme climates over Hindu Kush Himalayan region by 21 CMIP5 models 被引量:4
8
作者 WU Jie XU Ying GAO Xue-Jie 《Advances in Climate Change Research》 SCIE CSCD 2017年第3期176-184,共9页
Based on the outputs from 21 CMIP5 (Coupled Model Intercomparison Project phase 5) models, future changes in the mean temperature, precipitation and four climate extreme indices (annual maximum of daily maximum temper... Based on the outputs from 21 CMIP5 (Coupled Model Intercomparison Project phase 5) models, future changes in the mean temperature, precipitation and four climate extreme indices (annual maximum of daily maximum temperature (TXx), minimum of daily minimum temperature (TNn), annual total precipitation when the daily amount exceeds the 95th percentile of wet-day precipitation (R95p), and maximum consecutive 5-day precipitation (RX5day)) over Hindu Kush Himalayan (HKH) region are investigated under the greenhouse gas concentration pathways of RCP4.5 and RCP8.5. Two periods of the 21st century, 2036e2065 and 2066e2095, are selected, with the reference period is considered as 1976e2005. Results show general increase of the mean temperature, TXx and TNn under both scenarios, with the largest increases found during 2066e2095 under RCP8.5. Future precipitation is projected to increase over most part of HKH, except for the northwestern part. Intensification of the precipitation extremes is projected over the region. The uncertainties of mean temperature, TXx and TNn over the HKH1 subregions are the largest compared to the other three subregions and the overall HKH. Besides RX5day during 2036e2065 over HKH1, the uncertainties of R95p and RX5day tend to be larger following the increase of greenhouse gas concentrations. The multimodel ensemble medians of temperature and four extreme indices under RCP8.5 are projected to be larger than those under RCP4.5 in each of the subregions. 展开更多
关键词 HINDU Kush HIMALAYAN region CMIP5 Mean CLIMATE EXTREME CLIMATE EVENTS CLIMATE change PROJECTION
下载PDF
The PMIP3 Simulated Climate Changes over Arid Central Asia during the Mid-Holocene and Last Glacial Maximum 被引量:3
9
作者 XU Hongna WANG Tao +3 位作者 WANG Huijun MIAO Jiapeng CHEN Jianhui CHEN Shengqian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第3期725-742,共18页
In this study, the climate changes over Arid Central Asia(ACA) during the mid-Holocene(approximately 6,000 calendar years ago, MH) and the Last Glacial Maximum(approximately 21,000 calendar years ago, LGM) were invest... In this study, the climate changes over Arid Central Asia(ACA) during the mid-Holocene(approximately 6,000 calendar years ago, MH) and the Last Glacial Maximum(approximately 21,000 calendar years ago, LGM) were investigated using multimodel simulations derived from the Paleoclimate Modelling Intercomparison Project Phase 3(PMIP3). During the MH, the multimodel median(MMM) shows that in the core region of ACA, the regionally averaged annual surface air temperature(SAT) decreases by 0.13°C and annual precipitation decreases by 3.45%, compared with the preindustrial(PI) climate. The MMM of the SAT increases by 1.67/0.13°C in summer/autumn, whereas it decreases by 1.23/1.11°C in spring/winter. The amplitude of the seasonal cycles of the SAT increases over ACA due to different MH orbital parameters. For precipitation, the regionally averaged MMM decreases by 5.77%/5.69%/0.39%/5.24% in spring/summer/autumn/winter, respectively. Based on the analysis of the aridity index(AI), compared with the PI, a drier climate appears in southern Central Asia and western Xinjiang due to decreasing precipitation. During the LGM, the MMM shows that the regionally averaged SAT decreases by 5.04/4.36/4.70/5.12/5.88°C and precipitation decreases by 27.78%/28.16%/31.56%/27.74%/23.29% annually and in the spring, summer, autumn, and winter, respectively. Robust drying occurs throughout almost the whole core area. Decreasing precipitation plays a dominant role in shaping the drier conditions, whereas strong cooling plays a secondary but opposite role. In response to the LGM external forcings, over Central Asia and Xinjiang, the seasonal cycle of precipitation has a smaller amplitude compared with that under the PI climate. In the model-data comparison, the simulated MH moisture changes over ACA are to some extent consistent with the reconstructions, further confirming that drier conditions occurred during that period than during the PI. 展开更多
关键词 PMIP3 climate changes Arid Central Asia MID-HOLOCENE Last Glacial Maximum
下载PDF
The Effects of Land Cover Change on Regional Climate over the Eastern Part of Northwest China 被引量:2
10
作者 HAN Zhen-Yu GAO Xue-Jie +1 位作者 SHI Ying XU Ying 《Atmospheric and Oceanic Science Letters》 CSCD 2015年第3期153-159,共7页
A regional climate model (RegCM4) is em- ployed to investigate the impacts of land use/cover change (LUCC) on the climate over the eastern part of Northwest China (ENW) in the periods of 2001 and 2011. The re- s... A regional climate model (RegCM4) is em- ployed to investigate the impacts of land use/cover change (LUCC) on the climate over the eastern part of Northwest China (ENW) in the periods of 2001 and 2011. The re- sults indicated that the LUCC in ENW, which was char-acterized by desert retreat, reforestation, and farmland expansion, led to significant local changes in surface air temperature (within -0.3℃) and slight regional changes in precipitation (within -15%) in summer. In the desert retreat area, the net absorbed shortwave radiation had a greater influence than evaporative cooling, leading to increases in the daily mean and maximum temperature. Besides, the daily mean and maximum temperatures in- creased in the reforestation area but decreased in the farmland expansion area. As surface albedo showed no significant change in these regions, the temperature in- crease in the reforestation area can be attributed to a decrease in evaporation, while the opposite effect appears to have been the case in the farmland expansion area. 展开更多
关键词 land use/land cover change climate effect REGCM
下载PDF
Projected Climate Change in the Northwestern Arid Regions of China: An Ensemble of Regional Climate Model Simulations 被引量:2
11
作者 YU En-Tao XIANG Wei-Ling 《Atmospheric and Oceanic Science Letters》 CSCD 2015年第3期134-142,共9页
The projected temperature and precipitation- change under different emissions scenarios using Coupled Model Intercomparison Project Phase 5 models over the northwestern arid regions of China (NWAC) were ana- lyzed u... The projected temperature and precipitation- change under different emissions scenarios using Coupled Model Intercomparison Project Phase 5 models over the northwestern arid regions of China (NWAC) were ana- lyzed using the ensemble of three high-resolution dy- namical downscaling simulations: the simulation of the Regional Climate Model version 4.0 (RegCM4) forced by the Beijing Climate Center Climate System Model version 1.1 (BCC_CSMI.1); the Hadley Centre Global En- vironmental Model version 3 regional climate model (HadGEM3-RA) forced by the Atmosphere-Ocean cou- pled HadGEM version 2 (HadGEM2-AO); and the Weather Research and Forecasting (WRF) model forced by the Norwegian community Earth System Model (NorESM1-M). Model validation indicated that the mul- timodel simulations reproduce the spatial and temporal distribution of temperature and precipitation well. The temperature is projected to increase over NWAC under both the 4.5 and 8.5 Representative Concentration Path- ways scenarios (RCP4.5 and RCP8.5, respectively) in the middle of the 21 st century, but the warming trend is larger under the RCP8.5 scenario, Precipitation shows a signifi- cant increasing trend in spring and winter under both RCP4.5 and RCPS.5; but in summer, precipitation is pro- jected to decrease in the Tarim Basin and Junggar Basin. The regional averaged temperature and precipitation show increasing trends in the future over NWAC; meanwhile, the large variability of the winter mean temperature and precipitation may induce more extreme cold events and intense snowfall events in these regions in the future. 展开更多
关键词 northwestern arid regions regional climate model climate proiection
下载PDF
Steric Sea Level Change in Twentieth Century Historical Climate Simulation and IPCC-RCP8.5 Scenario Projection: A Comparison of Two Versions of FGOALS Model 被引量:1
12
作者 董璐 周天军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第3期841-854,共14页
To reveal the steric sea level change in 20th century historical climate simulations and future climate change projections under the IPCC's Representative Concentration Pathway 8.5 (RCP8.5) scenario, the results of... To reveal the steric sea level change in 20th century historical climate simulations and future climate change projections under the IPCC's Representative Concentration Pathway 8.5 (RCP8.5) scenario, the results of two versions of LASG/IAP's Flexible Global Ocean-Atmosphere-Land System model (FGOALS) are analyzed. Both models reasonably reproduce the mean dynamic sea level features, with a spatial pattern correlation coefficient of 0.97 with the observation. Characteristics of steric sea level changes in the 20th century historical climate simulations and RCPS.5 scenario projections are investigated. The results show that, in the 20th century, negative trends covered most parts of the global ocean. Under the RCPS.5 scenario, global-averaged steric sea level exhibits a pronounced rising trend throughout the 21st century and the general rising trend appears in most parts of the global ocean. The magnitude of the changes in the 21st century is much larger than that in the 20th century. By the year 2100, the global-averaged steric sea level anomaly is 18 cm and 10 cm relative to the year 1850 in the second spectral version of FGOALS (FGOALS-s2) and the second grid-point version of FGOALS (FGOALS-g2), respectively. The separate contribution of the thermosteric and halosteric components from various ocean layers is further evaluated. In the 20th century, the steric sea level changes in FGOALS-s2 (FGOALS-g2) are largely attributed to the thermosteric (halosteric) component relative to the pre-industrial control run. In contrast, in the 21st century, the thermosteric component, mainly from the upper 1000 m, dominates the steric sea level change in both models under the RCPS.5 scenario. In addition, the steric sea level change in the marginal sea of China is attributed to the thermosteric component. 展开更多
关键词 steric sea level historical climate simulation RCP8.5 scenario FGOALS model
下载PDF
Effects of climate changes on dust aerosol over East Asia from RegCM3 被引量:1
13
作者 ZHANG Dong-Feng GAO Xue-Jie +1 位作者 Ashraf ZAKEY Filippo GIORGI 《Advances in Climate Change Research》 SCIE CSCD 2016年第3期145-153,共9页
In order to understand impacts of global warming on dust aerosol over East Asia, a regional climate model(RegCM3) coupled with a dust model is employed to simulate the present(1991-2000, following the observed concent... In order to understand impacts of global warming on dust aerosol over East Asia, a regional climate model(RegCM3) coupled with a dust model is employed to simulate the present(1991-2000, following the observed concentration of the greenhouse gases) and future(2091-2100,following the A1B scenario) dust aerosol. Three experiments are performed over East Asia at a horizontal resolution of 50 km, driven by the outputs from a global model of the Model for Interdisciplinary Research on Climate(MIROC3.2_hires), two without(Exp.1 for the present and Exp.2 for the future) and one with(Exp.3 for the future) the radiative effects of dust aerosols. Effects of climate changes on dust aerosols and the feedback of radiative effects in the future are investigated by comparing differences of Exp.2 and Exp.1, Exp.3 and Exp.2, respectively. Results show that global warming will lead to the increases of dust emissions and column burden by 2% and 14% over East Asia, characterized by the increase in December-January-February-March(DJFM) and the decrease in Aprile May(AM). Similar variations are also seen in the projected frequencies of high dust emission events, showing an advanced active season of dust in the future. The net top-of-atmosphere(TOA)radiative forcing is positive over the desert source regions and negative over downwind regions, while the surface radiative forcing is negative over the domain, which will lead to a reduction of dust emissions and column burden. 展开更多
关键词 DUST AEROSOL Climate changes REGCM3 Numerical simulations
下载PDF
Climate change in the twenty-first century over China: projections by an RCM and the driving GCM
14
作者 CHEN Nan GAO Xuejie 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第4期270-277,共8页
A regional climate model(RegCM4)is used to project climate change over China in the twenty-first century under the RCP4.5 and RCP8.5 pathways.The driving GCM is CSIRO Mk3.6.0(hereafter referred to simply as CSIRO),and... A regional climate model(RegCM4)is used to project climate change over China in the twenty-first century under the RCP4.5 and RCP8.5 pathways.The driving GCM is CSIRO Mk3.6.0(hereafter referred to simply as CSIRO),and the simulation(hereafter referred to as CdR)is run at a grid spacing of 25 km.The focus of the present paper is on the changes in mean surface air temperature and precipitation in December–January–February(DJF)and June–July–August(JJA)over China.Validation of the model performances is provided first,followed by a comparison of future changes projected by CSIRO and CdR.Substantial warming in the future is simulated by both models,being more pronounced in DJF compared to JJA,and under RCP8.5 compared to RCP4.5.The warming shows different spatial patterns and,to a less extent,magnitude between CSIRO and CdR.Precipitation change shows a general increase in DJF and a mixture of increase and decrease in JJA.Substantial differences between the two models are found in for precipitation change in JJA.The paper further emphasizes the uncertainties in climate change projection over the region. 展开更多
关键词 Climate change REGCM China TEMPERATURE PRECIPITATION
下载PDF
Impact of the Atlantic multidecadal variability on East Asian summer climate in idealized simulations
15
作者 Dong Si Liwei Yu 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第5期75-80,共6页
本文利用基于地球系统模式CESM1开展的北大西洋多年代际振荡理想化数值试验,研究了北大西洋多年代际振荡对东亚夏季气候的影响。结果显示,北大西洋多年代际振荡可以通过中纬度罗斯贝波以及热带开尔文波的传播两种途径影响东亚夏季气候.... 本文利用基于地球系统模式CESM1开展的北大西洋多年代际振荡理想化数值试验,研究了北大西洋多年代际振荡对东亚夏季气候的影响。结果显示,北大西洋多年代际振荡可以通过中纬度罗斯贝波以及热带开尔文波的传播两种途径影响东亚夏季气候.当北大西洋多年代际振荡处于正位相时,一方面,偏暖的北大西洋通过激发一条从北大西洋向下游传播的中纬度大气罗斯贝波列导致东亚陆地气压降低而西北太平洋气压升高,使得东亚-西北太平洋之间的海陆气压差增强;另一方面,偏暖的北大西洋激发赤道开尔文波东传,激发西北太平洋对流层低层出现反气旋式环流异常.通过以上两种途径,正位相的北大西洋多年代际振荡最终导致东亚夏季风增强,东亚地区夏季出现北湿南干和偏暖的气候。 展开更多
关键词 大西洋多年代际振荡 理想化试验 东亚夏季气候 海表温度
下载PDF
Simulation of the Ecosystem Productivity Responses to Aerosol Diffuse Radiation Fertilization Effects over the Pan-Arctic during 2001–19 被引量:1
16
作者 Zhiding ZHANG Xu YUE +3 位作者 Hao ZHOU Jun ZHU Yadong LEI Chenguang TIAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期84-96,共13页
The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil... The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming. 展开更多
关键词 diffuse radiation fertilization effects anthropogenic aerosols natural aerosols pan-Arctic net primary productivity
下载PDF
Projected changes in Köppen-Trewartha climate zones under 1.5-4℃global warming targets over mid-high latitudes of Northern Asia using an ensemble of RegCM4 simulations
17
作者 Jie WU Xue-Jie GAO +1 位作者 Xian-Bing TANG Filippo GIORGI 《Advances in Climate Change Research》 SCIE CSCD 2024年第2期185-196,共12页
Mid-high latitude Northern Asia is one of the most vulnerable and sensitive areas to global warming,but relatively less studied previously.We used an ensemble of a regional climate model(RegCM4)projections to assess f... Mid-high latitude Northern Asia is one of the most vulnerable and sensitive areas to global warming,but relatively less studied previously.We used an ensemble of a regional climate model(RegCM4)projections to assess future changes in surface air temperature,precipitation and Köppen-Trewartha(K-T)climate types in Northern Asia under the 1.5-4℃global warming targets.RegCM4 is driven by five CMIP5 global models over an East Asia domain at a grid spacing of 25 km.Validation of the present day(1986-2005)simulations shows that the ensembles of RegCM4(ensR)and driving GCMs(ensG)reproduce the major characters of the observed temperature,precipitation and K-T climate zones reasonably well.Greater and more realistic spatial detail is found in RegCM4 compared to the driving GCMs.A general warming and overall increases in precipitation are projected over the region,with these changes being more pronounced at higher warming levels.The projected warming by ensR shows different spatial patterns,and is in general lower,compared to ensG in most months of the year,while the percentage increases of precipitation are maximum during the cold months.The future changes in K-T climate zones are characterized by a substantial expansion of Dc(temperature oceanic)and retreat of Ec(sub-arctic continental)over the region,reaching∼20%under the 4℃warming level.The most notable change in climate types in ensR is found over Japan(∼60%),followed by Southern Siberia,Mongolia,and the Korean Peninsula(∼40%).The largest change in the K-T climate types is found when increasing from 2 to 3℃.The results will help to better assess the impacts of climate change and in implementation of appropriate adaptation measures over the region. 展开更多
关键词 Mid-high latitudes of Northern Asia Köppen climate zones Global warming targets Regional climate model
原文传递
Projecting Spring Consecutive Rainfall Events in the Three Gorges Reservoir Based on Triple-Nested Dynamical Downscaling
18
作者 Yanxin ZHENG Shuanglin LI +2 位作者 Noel KEENLYSIDE Shengping HE Lingling SUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1539-1558,共20页
Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate model... Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate models(GCMs) are subject to considerable uncertainties, largely caused by their coarse resolution. This study applies a triple-nested WRF(Weather Research and Forecasting) model dynamical downscaling, driven by a GCM, MIROC6(Model for Interdisciplinary Research on Climate, version 6), to improve the historical simulation and reduce the uncertainties in the future projection of CREs in the TGR. Results indicate that WRF has better performances in reproducing the observed rainfall in terms of the daily probability distribution, monthly evolution and duration of rainfall events, demonstrating the ability of WRF in simulating CREs. Thus, the triple-nested WRF is applied to project the future changes of CREs under the middle-of-the-road and fossil-fueled development scenarios. It is indicated that light and moderate rainfall and the duration of continuous rainfall spells will decrease in the TGR, leading to a decrease in the frequency of CREs. Meanwhile, the duration, rainfall amount, and intensity of CREs is projected to regional increase in the central-west TGR. These results are inconsistent with the raw projection of MIROC6. Observational diagnosis implies that CREs are mainly contributed by the vertical moisture advection. Such a synoptic contribution is captured well by WRF, which is not the case in MIROC6,indicating larger uncertainties in the CREs projected by MIROC6. 展开更多
关键词 triple-nested downscaling Three Gorges Reservoir area consecutive rainfall events geological hazards PROJECTION
下载PDF
Future changes in thermal comfort conditions over China based on multi-RegCM4 simulations 被引量:40
19
作者 GAO Xue-Jie WU Jie +7 位作者 SHI Ying WU Jia HAN Zhen-Yu ZHANG Dong-Feng TONG Yao LI Rou-Ke XU Ying GIORGI Filippo 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第4期291-299,共9页
A set of high resolution(25 km)21st century climate change projections using the regional climate model RegCM4 driven by four global model simulations were conducted over East Asia under the mid-range RCP4.5 scenario.... A set of high resolution(25 km)21st century climate change projections using the regional climate model RegCM4 driven by four global model simulations were conducted over East Asia under the mid-range RCP4.5 scenario.In the present paper,the authors investigate the change in thermal comfort conditions over china based on an ensemble of the projections,using the index of effective temperature(ET),which considers the aggregate effects of temperature,relative humidity,and wind on human thermal perception.The analysis also accounts for exposure as measured by distributed population amount scenarios.The authors find that the general increase in ET leads to a large increase in population exposure to very hot days(a China-aggregated sixfold increase in‘person-days’by the end of the 21st century.There is a decrease in cool,cold,and very cold person-days.Meanwhile,a decrease in comfortable day conditions by 22%person-days is found despite an increase in climate-based comfortable days.Analysis of the different contributions to the changes(climate,population,and interactions between the two)show that climate effects play a more important role in the hot end of the thermal comfort categories,while the population effects tend to be dominant in the cold categories.Thus,overall,even a mid-level warming scenario is found to increase the thermal stress over China,although there is a strong geographical dependence.The inclusion of population exposure strongly modulates the climateonly signal,which highlights the need for including socioeconomic factors in the assessment of risks associated with climate change. 展开更多
关键词 Thermal COMFORT CONDITIONS REGCM CLIMATE CHANGE POPULATION
下载PDF
Climate Responses to Direct Radiative Forcing of Anthropogenic Aerosols,Tropospheric Ozone,and Long-Lived Greenhouse Gases in Eastern China over 1951–2000 被引量:24
20
作者 常文渊 廖宏 王会军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第4期748-762,共15页
A unified chemistry-aerosol-climate model is applied in this work to compare climate responses to changing concentrations of long-lived greenhouse gases (GHGs, CO2, CH4, N2O), tropospheric O3, and aerosols during th... A unified chemistry-aerosol-climate model is applied in this work to compare climate responses to changing concentrations of long-lived greenhouse gases (GHGs, CO2, CH4, N2O), tropospheric O3, and aerosols during the years 1951-2000. Concentrations of sulfate, nitrate, primary organic carbon (POA), secondary organic carbon (SOA), black carbon (BC) aerosols, and tropospheric 03 for the years 1950 and 2000 are obtained a priori by coupled chemistry-aerosol-GCM simulations, and then monthly concentrations are interpolated linearly between 1951 and 2000. The annual concentrations of GHGs are taken from the IPCC Third Assessment Report. BC aerosol is internally mixed with other aerosols. Model results indicate that the sinmlated climate change over 1951-2000 is sensitive to anthropogenic changes in atmospheric components. The predicted year 2000 global mean surface air temperature can differ by 0.8℃ with different forcings. Relative to the climate simulation without changes in GHGs, O3, and aerosols, anthropogenic forcings of SO4^2-, BC, BC+SO4^2-, BC+SO4^2- +POA, BC+SO4^2- +POA+SOA+NO3^-, O3, and GHGs are predicted to change the surface air temperature averaged over 1971-2000 in eastern China, respectively, by -0.40℃, +0.62℃, +0.18℃, +0.15℃, -0.78℃, +0.43℃, and +0.85℃, and to change the precipitation, respectively, by -0.21, +0.07, -0.03, +0.02, -0.24, -0.08, and +0.10 mm d^-1. The authors conclude that all major aerosols are as important as GHGs in influencing climate change in eastern China, and tropospheric O3 also needs to be included in studies of regional climate change in China. 展开更多
关键词 direct effect of aerosol tropospheric ozone greenhouse gases transient simulation
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部