Several nomograms for prostate cancer detection have recently been developed. Because the incidence of prostate cancer is lower in Chinese men, nomograms based on other populations cannot be directly applied to Chines...Several nomograms for prostate cancer detection have recently been developed. Because the incidence of prostate cancer is lower in Chinese men, nomograms based on other populations cannot be directly applied to Chinese men. We, therefore, developed a model for predicting the probability of a positive initial prostate biopsy using clinical and laboratory data from a Chinese male population. Data were collected from 893 Chinese male referrals, 697 in the derivation set and 196 in the external validation set, who underwent initial prostate biopsies as individual screening. We analyzed age, prostate volume, total prostate-specific antigen (PSA), PSA density (PSAD), digital rectal examinations (DRE) and transrectal ultrasound (TRUS) echogenicity. Logistic regression analysis estimated odds ratio, 95% confidence intervals and Pvalues. Independent predictors of a positive biopsy result included advanced age, small prostate volume, elevated total PSA, abnormal digital rectal examination, and hyperechoic or hypoechoic TRUS echogenicity. We developed a predictive nomogram for an initial positive biopsy using these variables. The area under the receiver-operating characteristic curve for the model was 88.8%, which was greater than that of the prediction based on total PSA alone (area under the receiver-operating characteristic curve 74.7%). If externally validated, the predictive probability was 0.827 and the accuracy rate was 78.1%, respectively. Incorporating clinical and laboratory data into a prebiopsy nomogram improved the prediction of prostate cancer compared with predictions based solely on the individual factors.展开更多
文摘Several nomograms for prostate cancer detection have recently been developed. Because the incidence of prostate cancer is lower in Chinese men, nomograms based on other populations cannot be directly applied to Chinese men. We, therefore, developed a model for predicting the probability of a positive initial prostate biopsy using clinical and laboratory data from a Chinese male population. Data were collected from 893 Chinese male referrals, 697 in the derivation set and 196 in the external validation set, who underwent initial prostate biopsies as individual screening. We analyzed age, prostate volume, total prostate-specific antigen (PSA), PSA density (PSAD), digital rectal examinations (DRE) and transrectal ultrasound (TRUS) echogenicity. Logistic regression analysis estimated odds ratio, 95% confidence intervals and Pvalues. Independent predictors of a positive biopsy result included advanced age, small prostate volume, elevated total PSA, abnormal digital rectal examination, and hyperechoic or hypoechoic TRUS echogenicity. We developed a predictive nomogram for an initial positive biopsy using these variables. The area under the receiver-operating characteristic curve for the model was 88.8%, which was greater than that of the prediction based on total PSA alone (area under the receiver-operating characteristic curve 74.7%). If externally validated, the predictive probability was 0.827 and the accuracy rate was 78.1%, respectively. Incorporating clinical and laboratory data into a prebiopsy nomogram improved the prediction of prostate cancer compared with predictions based solely on the individual factors.