期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Speech Enhancement via Residual Dense Generative Adversarial Network 被引量:1
1
作者 Lin Zhou Qiuyue Zhong +2 位作者 Tianyi Wang Siyuan Lu Hongmei Hu 《Computer Systems Science & Engineering》 SCIE EI 2021年第9期279-289,共11页
Generative adversarial networks(GANs)are paid more attention to dealing with the end-to-end speech enhancement in recent years.Various GANbased enhancement methods are presented to improve the quality of reconstructed... Generative adversarial networks(GANs)are paid more attention to dealing with the end-to-end speech enhancement in recent years.Various GANbased enhancement methods are presented to improve the quality of reconstructed speech.However,the performance of these GAN-based methods is worse than those of masking-based methods.To tackle this problem,we propose speech enhancement method with a residual dense generative adversarial network(RDGAN)contributing to map the log-power spectrum(LPS)of degraded speech to the clean one.In detail,a residual dense block(RDB)architecture is designed to better estimate the LPS of clean speech,which can extract rich local features of LPS through densely connected convolution layers.Meanwhile,sequential RDB connections are incorporated on various scales of LPS.It significantly increases the feature learning flexibility and robustness in the time-frequency domain.Simulations show that the proposed method achieves attractive speech enhancement performance in various acoustic environments.Specifically,in the untrained acoustic test with limited priors,e.g.,unmatched signal-to-noise ratio(SNR)and unmatched noise category,RDGAN can still outperform the existing GAN-based methods and masking-based method in the measures of PESQ and other evaluation indexes.It indicates that our method is more generalized in untrained conditions. 展开更多
关键词 Generative adversarial networks neural networks residual dense block speech enhancement
下载PDF
Chemically induced hypoxia by dimethyloxalylglycine(DMOG)-loaded nanoporous silica nanoparticles supports endothelial tube formation by sustained VEGF release from adipose tissue-derived stem cells 被引量:1
2
作者 Sarah Zippusch Karen FWBesecke +7 位作者 Florian Helms Melanie Klingenberg Anne Lyons Peter Behrens Axel Haverich Mathias Wilhelmi Nina Ehlert Ulrike Boer 《Regenerative Biomaterials》 SCIE 2021年第5期63-74,共12页
Inadequate vascularization leading to insufficient oxygen and nutrient supply in deeper layers of bioartificial tissues remains a limitation in current tissue engineering approaches to which prevascularization offers ... Inadequate vascularization leading to insufficient oxygen and nutrient supply in deeper layers of bioartificial tissues remains a limitation in current tissue engineering approaches to which prevascularization offers a promising solution.Hypoxia triggering pre-vascularization by enhanced vascular endothelial growth factor(VEGF)expression can be induced chemically by dimethyloxalylglycine(DMOG).Nanoporous silica nanoparticles(NPSNPs,or mesoporous silica nanoparticles,MSNs)enable sustained delivery of molecules and potentially release DMOG allowing a durable capillarization of a construct.Here we evaluated the effects of soluble DMOG and DMOG-loaded NPSNPs on VEGF secretion of adipose tissue-derived stem cells(ASC)and on tube formation by human umbilical vein endothelial cells(HUVEC)-ASC co-cultures.Repeated doses of 100 mM and 500 mM soluble DMOG on ASC resulted in 3-to 7-fold increased VEGF levels on day 9(P<0.0001).Same doses of DMOG-NPSNPs enhanced VEGF secretion 7.7-fold(P<0.0001)which could be maintained until day 12 with 500 mM DMOG-NPSNPs.In fibrin-based tube formation assays,100 mM DMOG-NPSNPs had inhibitory effects whereas 50 mM significantly increased tube length,area and number of junctions transiently for 4 days.Thus,DMOG-NPSNPs supported endothelial tube formation by upregulated VEGF secretion from ASC and thus display a promising tool for prevascularization of tissue-engineered constructs.Further studies will evaluate their effect in hydrogels under perfusion. 展开更多
关键词 pre-vascularization tissue engineering adipose tissue-derived stem cells dimethyloxalylglycine nanoporous silica nanoparticles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部