We derive and numerically solve a surface active nematodynamics model.We validate the numerical approach on a sphere and analyse the influence of hydro-dynamics on the oscillatory motion of topological defects.For ell...We derive and numerically solve a surface active nematodynamics model.We validate the numerical approach on a sphere and analyse the influence of hydro-dynamics on the oscillatory motion of topological defects.For ellipsoidal surfaces the influence of geometric forces on these motion patterns is addressed by taking into ac-count the effects of intrinsic as well as extrinsic curvature contributions.The numerical experiments demonstrate the stronger coupling with geometric properties if extrinsic curvature contributions are present and provide a possibility to tuneflow and defect motion by surface properties.展开更多
Minimally invasive endoscopy offers a high potential for biomedical imaging applications.However,conventional fiberoptic endoscopes require lens systems which are not suitable for real-time 3D imaging.Instead,a diffus...Minimally invasive endoscopy offers a high potential for biomedical imaging applications.However,conventional fiberoptic endoscopes require lens systems which are not suitable for real-time 3D imaging.Instead,a diffuser is utilized for passively encoding incoherent 3D objects into 2D speckle patterns.Neural networks are employed for fast computational image reconstruction beyond the optical memory effect.In this paper,we demonstrate single-shot 3D incoherent fiber imaging with keyhole access at video rate.Applying the diffuser fiber endoscope for fluorescence imaging is promising for in vivo deep brain diagnostics with cellular resolution.展开更多
Quantitative phase imaging (QPI) has emerged as method for investigating biological specimen and technical objects. However, conventional methods often suffer from shortcomings in image quality, such as the twin image...Quantitative phase imaging (QPI) has emerged as method for investigating biological specimen and technical objects. However, conventional methods often suffer from shortcomings in image quality, such as the twin image artifact. A novel computational framework for QPI is presented with high quality inline holographic imaging from a single intensity image. This paradigm shift is promising for advanced QPI of cells and tissues.展开更多
Quantitative phase imaging(QPI)is a label-free technique providing both morphology and quantitative biophysical information in biomedicine.However,applying such a powerful technique to in vivo pathological diagnosis r...Quantitative phase imaging(QPI)is a label-free technique providing both morphology and quantitative biophysical information in biomedicine.However,applying such a powerful technique to in vivo pathological diagnosis remains challenging.Multi-core fiber bundles(MCFs)enable ultra-thin probes for in vivo imaging,but current MCF imaging techniques are limited to amplitude imaging modalities.We demonstrate a computational lensless microendoscope that uses an ultra-thin bare MCF to perform quantitative phase imaging with microscale lateral resolution and nanoscale axial sensitivity of the optical path length.The incident complex light field at the measurement side is precisely reconstructed from the far-field speckle pattern at the detection side,enabling digital refocusing in a multi-layer sample without any mechanical movement.The accuracy of the quantitative phase reconstruction is validated by imaging the phase target and hydrogel beads through the MCF.With the proposed imaging modality,three-dimensional imaging of human cancer cells is achieved through the ultra-thin fiber endoscope,promising widespread clinical applications.展开更多
The use of optical tweezers to measure forces acting upon microscopic particles has revolutionised fields from material science to cell biology.However,despite optical control capabilities,this technology is highly co...The use of optical tweezers to measure forces acting upon microscopic particles has revolutionised fields from material science to cell biology.However,despite optical control capabilities,this technology is highly constrained by the material properties of the probe,and its use may be limited due to concerns about the effect on biological processes.Here we present a novel,optically controlled trapping method based on light-induced hydrodynamic flows.Specifically,we leverage optical control capabilities to convert a translationally invariant topological defect of a flow field into an attractor for colloids in an effectively one-dimensional harmonic,yet freely rotatable system.Circumventing the need to stabilise particle dynamics along an unstable axis,this novel trap closely resembles the isotropic dynamics of optical tweezers.Using magnetic beads,we explicitly show the existence of a linear force-extension relationship that can be used to detect femtoNewton-range forces with sensitivity close to the thermal limit.Our force measurements remove the need for laser-particle contact,while also lifting material constraints,which renders them a particu-larly interesting tool for the life sciences and engineering.展开更多
基金financial support by DFG through FOR3013,computing resources provided by PFAMDIS at FZ Julich.
文摘We derive and numerically solve a surface active nematodynamics model.We validate the numerical approach on a sphere and analyse the influence of hydro-dynamics on the oscillatory motion of topological defects.For ellipsoidal surfaces the influence of geometric forces on these motion patterns is addressed by taking into ac-count the effects of intrinsic as well as extrinsic curvature contributions.The numerical experiments demonstrate the stronger coupling with geometric properties if extrinsic curvature contributions are present and provide a possibility to tuneflow and defect motion by surface properties.
基金supported by the German Research Foundation(DFG)under grant(CZ 55/48-1).
文摘Minimally invasive endoscopy offers a high potential for biomedical imaging applications.However,conventional fiberoptic endoscopes require lens systems which are not suitable for real-time 3D imaging.Instead,a diffuser is utilized for passively encoding incoherent 3D objects into 2D speckle patterns.Neural networks are employed for fast computational image reconstruction beyond the optical memory effect.In this paper,we demonstrate single-shot 3D incoherent fiber imaging with keyhole access at video rate.Applying the diffuser fiber endoscope for fluorescence imaging is promising for in vivo deep brain diagnostics with cellular resolution.
文摘Quantitative phase imaging (QPI) has emerged as method for investigating biological specimen and technical objects. However, conventional methods often suffer from shortcomings in image quality, such as the twin image artifact. A novel computational framework for QPI is presented with high quality inline holographic imaging from a single intensity image. This paradigm shift is promising for advanced QPI of cells and tissues.
基金Deutsche Forschungsgemeinschaft(DFG)grant CZ55/40-1Tsinghua Scholarship for Overseas Graduate Studies grant 2020023+1 种基金European Union’s Horizon 2020 research and innovation programs No.953121(project FLAMIN-GO)Open Access funding enabled and organized by Projekt DEAL。
文摘Quantitative phase imaging(QPI)is a label-free technique providing both morphology and quantitative biophysical information in biomedicine.However,applying such a powerful technique to in vivo pathological diagnosis remains challenging.Multi-core fiber bundles(MCFs)enable ultra-thin probes for in vivo imaging,but current MCF imaging techniques are limited to amplitude imaging modalities.We demonstrate a computational lensless microendoscope that uses an ultra-thin bare MCF to perform quantitative phase imaging with microscale lateral resolution and nanoscale axial sensitivity of the optical path length.The incident complex light field at the measurement side is precisely reconstructed from the far-field speckle pattern at the detection side,enabling digital refocusing in a multi-layer sample without any mechanical movement.The accuracy of the quantitative phase reconstruction is validated by imaging the phase target and hydrogel beads through the MCF.With the proposed imaging modality,three-dimensional imaging of human cancer cells is achieved through the ultra-thin fiber endoscope,promising widespread clinical applications.
基金We thank Iain Patten for valuable discussions on the structure and layout of the manuscript.IDS kindly acknowledges funding from the Life grant by Volkswagen Foundation(Grant No.92772).
文摘The use of optical tweezers to measure forces acting upon microscopic particles has revolutionised fields from material science to cell biology.However,despite optical control capabilities,this technology is highly constrained by the material properties of the probe,and its use may be limited due to concerns about the effect on biological processes.Here we present a novel,optically controlled trapping method based on light-induced hydrodynamic flows.Specifically,we leverage optical control capabilities to convert a translationally invariant topological defect of a flow field into an attractor for colloids in an effectively one-dimensional harmonic,yet freely rotatable system.Circumventing the need to stabilise particle dynamics along an unstable axis,this novel trap closely resembles the isotropic dynamics of optical tweezers.Using magnetic beads,we explicitly show the existence of a linear force-extension relationship that can be used to detect femtoNewton-range forces with sensitivity close to the thermal limit.Our force measurements remove the need for laser-particle contact,while also lifting material constraints,which renders them a particu-larly interesting tool for the life sciences and engineering.