The recent economic progress in China has stimulated scientific research in sandy lands in Inner Mongolia, where the Institute of Desert Research, Chinese Academy of Sciences (now CAREERI) has a leading position. Ec...The recent economic progress in China has stimulated scientific research in sandy lands in Inner Mongolia, where the Institute of Desert Research, Chinese Academy of Sciences (now CAREERI) has a leading position. Economic progress naturally creates financial resources for research, and also a dire need for solutions to emerging environmental problems following development, where wind-blown dust from Inner Mongolia adds to the severe particle air pollution in many Chinese cities. This paper presents selected results and observations made during Chinese-Swedish cooperation projects spanning 25 years. Results and experiences from sandy land research concerning climate, vegetation, root dynamics, soil carbon balances, etc. are briefly presented. The evolution of the Naiman Desertification Research Station, 520 km northeast of Beijing, from 1988 to 2013 is duly noted and commented. An overview of the ICBM soil carbon model concept follows and a few recommendations for future scientific advancement in Chinese arid lands are given.展开更多
The article Decadal glacial lake changes in the Koshi basin,central Himalaya,from 1977 to 2010,derived from Landsat satellite images,written by Finu SHRESTHA,GAO Xiao,Narendra Raj KHANAL,Sudan Bikash MAHARJAN,Rajendra...The article Decadal glacial lake changes in the Koshi basin,central Himalaya,from 1977 to 2010,derived from Landsat satellite images,written by Finu SHRESTHA,GAO Xiao,Narendra Raj KHANAL,Sudan Bikash MAHARJAN,Rajendra Bahadur SHRESTHA,WU Li-zong,Pradeep Kumar MOOL and Samjwal Ratna BAJRACHARYA,was originally erroneously published electronicaliy on the publisher's internet portal(currently SpringerLink)on 04 October 2017 without open access.展开更多
Changes in glacial lakes and the consequences of these changes, particularly on the development of water resources and management of glacial lake outburst flood(GLOF) risk, has become one of the challenges in the sust...Changes in glacial lakes and the consequences of these changes, particularly on the development of water resources and management of glacial lake outburst flood(GLOF) risk, has become one of the challenges in the sustainable development of high mountain areas in the context of global warming. This paper presents the findings of a study on the distribution of, and area changes in, glacial lakes in the Koshi basin in the central Himalayas.Data on the number of glacial lakes and their area was generated for the years 1977, 1990, 2000, and 2010 using Landsat satellite images. According to the glacial lake inventory in 2010, there were a total of 2168 glacial lakes with a total area of 127.61 km^2 and average size of 0.06 km^2 in the Koshi basin. Of these,47% were moraine dammed lakes, 34.8% bedrock dammed lakes and 17.7% ice dammed lakes. The number of glacial lakes increased consistently over the study period from 1160 in 1977 to 2168 in 2010, an overall growth rate of 86.9%. The area of glacial lakes also increased from 94.44 km^2 in 1977 to 127.61 km^2 in 2010, a growth rate of 35.1%. A large number of glacial lakes in the inventory are small in size(≤ 0.1km^2). End moraine dammed lakes with area greater than 0.1 km^2 were selected to analyze the change characteristics of glacial lakes in the basin. The results show that, in 2010, there were 129 lakes greater than 0.1 km^2 in area; these lakes had a total area of 42.92km^2 in 1997, increasing to 63.28 km^2 in 2010. The distribution of lakes on the north side of the Himalayas(in China) was three times higher than on the south side of the Himalayas(in Nepal).Comparing the mean growth rate in area for the 33 year study period(1977-2010), the growth rate on the north side was found to be a little slower than that on the south side. A total of 42 glacial lakes with an area greater than 0.2 km^2 are rapidly growing between 1977 and 2010 in the Koshi basin, which need to be paid more attention to monitoring in the future and to identify how critical they are in terms of GLOF.展开更多
基金a Professorship for Senior International Scientists(Grant No.Y229D91001)the project"Vegetation Dynamics in Semiarid Rangeland in Naiman Banner,Inner Mongolia,"funded by the Swedish agency SAREC and IDRAS,Chinese Academy of Sciences
文摘The recent economic progress in China has stimulated scientific research in sandy lands in Inner Mongolia, where the Institute of Desert Research, Chinese Academy of Sciences (now CAREERI) has a leading position. Economic progress naturally creates financial resources for research, and also a dire need for solutions to emerging environmental problems following development, where wind-blown dust from Inner Mongolia adds to the severe particle air pollution in many Chinese cities. This paper presents selected results and observations made during Chinese-Swedish cooperation projects spanning 25 years. Results and experiences from sandy land research concerning climate, vegetation, root dynamics, soil carbon balances, etc. are briefly presented. The evolution of the Naiman Desertification Research Station, 520 km northeast of Beijing, from 1988 to 2013 is duly noted and commented. An overview of the ICBM soil carbon model concept follows and a few recommendations for future scientific advancement in Chinese arid lands are given.
文摘The article Decadal glacial lake changes in the Koshi basin,central Himalaya,from 1977 to 2010,derived from Landsat satellite images,written by Finu SHRESTHA,GAO Xiao,Narendra Raj KHANAL,Sudan Bikash MAHARJAN,Rajendra Bahadur SHRESTHA,WU Li-zong,Pradeep Kumar MOOL and Samjwal Ratna BAJRACHARYA,was originally erroneously published electronicaliy on the publisher's internet portal(currently SpringerLink)on 04 October 2017 without open access.
基金supported by the Cryosphere Monitoring Programme (CMP) of the International Centre for Integrated Mountain Development (ICIMOD) funded by the Norwegian Ministry of Foreign Affairssupported by core funds of ICIMOD contributed by the Governments of Afghanistan, Australia, Austria, Bangladesh, Bhutan, China, India, Myanmar, Nepal, Norway, Pakistan, Switzerland, and the United Kingdomthe Koshi Basin Programme at ICIMOD, which is supported by the Australian Government through the Sustainable Development Investment Portfolio for South Asia
文摘Changes in glacial lakes and the consequences of these changes, particularly on the development of water resources and management of glacial lake outburst flood(GLOF) risk, has become one of the challenges in the sustainable development of high mountain areas in the context of global warming. This paper presents the findings of a study on the distribution of, and area changes in, glacial lakes in the Koshi basin in the central Himalayas.Data on the number of glacial lakes and their area was generated for the years 1977, 1990, 2000, and 2010 using Landsat satellite images. According to the glacial lake inventory in 2010, there were a total of 2168 glacial lakes with a total area of 127.61 km^2 and average size of 0.06 km^2 in the Koshi basin. Of these,47% were moraine dammed lakes, 34.8% bedrock dammed lakes and 17.7% ice dammed lakes. The number of glacial lakes increased consistently over the study period from 1160 in 1977 to 2168 in 2010, an overall growth rate of 86.9%. The area of glacial lakes also increased from 94.44 km^2 in 1977 to 127.61 km^2 in 2010, a growth rate of 35.1%. A large number of glacial lakes in the inventory are small in size(≤ 0.1km^2). End moraine dammed lakes with area greater than 0.1 km^2 were selected to analyze the change characteristics of glacial lakes in the basin. The results show that, in 2010, there were 129 lakes greater than 0.1 km^2 in area; these lakes had a total area of 42.92km^2 in 1997, increasing to 63.28 km^2 in 2010. The distribution of lakes on the north side of the Himalayas(in China) was three times higher than on the south side of the Himalayas(in Nepal).Comparing the mean growth rate in area for the 33 year study period(1977-2010), the growth rate on the north side was found to be a little slower than that on the south side. A total of 42 glacial lakes with an area greater than 0.2 km^2 are rapidly growing between 1977 and 2010 in the Koshi basin, which need to be paid more attention to monitoring in the future and to identify how critical they are in terms of GLOF.