We use the couple dipole method to investigate the scanning near-field optical microscopy metallic tip-nanoparticle near-field interaction. Dependences of the local field intensity inside the nanoparticle on the nanos...We use the couple dipole method to investigate the scanning near-field optical microscopy metallic tip-nanoparticle near-field interaction. Dependences of the local field intensity inside the nanoparticle on the nanosized tip shape,the tip open angle and the illumination angle are revealed. In combination with the previous results, we establish a complete model to understand the tip-nanoparticle near-field coupling mechanism.展开更多
In this work,HengYan Wang and Jian Pan contributed equally to this work.The annotation for the contribution was omitted in the original publication of this paper[I].It can be conformed in the submitted PDF version of ...In this work,HengYan Wang and Jian Pan contributed equally to this work.The annotation for the contribution was omitted in the original publication of this paper[I].It can be conformed in the submitted PDF version of the manuscript.Hence,the sentence“HengYan Wang and Jian Pan conjtributed equally to this work.”should be added.展开更多
Heat-bath algorithmic cooling(HBAC)has been proven to be a powerful and effective method for obtaining high polarization of the target system.Its cooling upper bound has been recently found using a specific algorithm,...Heat-bath algorithmic cooling(HBAC)has been proven to be a powerful and effective method for obtaining high polarization of the target system.Its cooling upper bound has been recently found using a specific algorithm,the partner pairing algorithm(PPAHBAC).It has been shown that by including cross-relaxation,it is possible to surpass the cooling bounds.Herein,by combining cross-relaxation and decoherence-free subspace,we present a two-qubit reset sequence and then generate a new algorithmic cooling(AC)technique using irreversible polarization compression to further surpass the bound.The proposed two-qubit reset sequence can prepare one of the two qubits to four times the polarization of a single-qubit reset operation in PPA-HBAC for low polarization.When the qubit number is large,the cooling limit of the proposed AC is approximately five times as high as the PPA-HBAC.The results reveal that cross-relaxation and decoherence-free subspace are promising resources to create new AC for higher polarization.展开更多
基金Supported by the Start-Up Grant of Zhejiang University of Technology,the Zhejiang Provincial Key Laboratory of Information Processing,Communication and Networking,the Zhejiang University,and the National Natural Science Foundation of China under Grant No 61605171
文摘We use the couple dipole method to investigate the scanning near-field optical microscopy metallic tip-nanoparticle near-field interaction. Dependences of the local field intensity inside the nanoparticle on the nanosized tip shape,the tip open angle and the illumination angle are revealed. In combination with the previous results, we establish a complete model to understand the tip-nanoparticle near-field coupling mechanism.
文摘In this work,HengYan Wang and Jian Pan contributed equally to this work.The annotation for the contribution was omitted in the original publication of this paper[I].It can be conformed in the submitted PDF version of the manuscript.Hence,the sentence“HengYan Wang and Jian Pan conjtributed equally to this work.”should be added.
基金supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306600)the National Natural Science Foundation of China (Grant Nos. 11905184, and 11605153)+1 种基金the Natural Science Foundation of Zhejiang Province (Grant No. LQ19A050001)the Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000)
文摘Heat-bath algorithmic cooling(HBAC)has been proven to be a powerful and effective method for obtaining high polarization of the target system.Its cooling upper bound has been recently found using a specific algorithm,the partner pairing algorithm(PPAHBAC).It has been shown that by including cross-relaxation,it is possible to surpass the cooling bounds.Herein,by combining cross-relaxation and decoherence-free subspace,we present a two-qubit reset sequence and then generate a new algorithmic cooling(AC)technique using irreversible polarization compression to further surpass the bound.The proposed two-qubit reset sequence can prepare one of the two qubits to four times the polarization of a single-qubit reset operation in PPA-HBAC for low polarization.When the qubit number is large,the cooling limit of the proposed AC is approximately five times as high as the PPA-HBAC.The results reveal that cross-relaxation and decoherence-free subspace are promising resources to create new AC for higher polarization.