期刊文献+
共找到475篇文章
< 1 2 24 >
每页显示 20 50 100
Revealing the specific role of sulfide and nano-alumina in composite solid-state electrolytes for performance-reinforced ether-nitrile copolymers
1
作者 Haoyang Yuan Changhao Tian +3 位作者 Mengyuan Song Wenjun Lin Tao Huang Aishui Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期628-636,共9页
Composite solid-state electrolytes represent a critical pathway that balances the interface compatibility and lithium-ion conductivity in all-solid-state batteries.The quest for stable and highly ion-conductive combin... Composite solid-state electrolytes represent a critical pathway that balances the interface compatibility and lithium-ion conductivity in all-solid-state batteries.The quest for stable and highly ion-conductive combinations between polymers and fillers is vital,but blind attempts are often made due to a lack of understanding of the mechanisms involved in the interaction between polymers and fillers.Herein,we employ in-situ polymerization to prepare a polymer based on an ether-nitrile copolymer with high cathode stability as the foundation and discuss the performance enhancement mechanisms of argyrodite and nano-alumina.With 1%content of sulfide interacting with the polymer at the two-phase interface,the local enhancement of lithium-ion migration capability can be achieved,avoiding the reduction in capacity due to the low ion conductivity of the passivation layer during cycling.The capacity retention after 50cycles at 0.5 C increases from 83.5%to 94.4%.Nano-alumina,through anchoring the anions and interface inhibition functions,eventually poses an initial discharge capacity of 136.8 m A h g^(-1)at 0.5 C and extends the cycling time to 1000 h without short-circuiting in lithium metal batteries.Through the combined action of dual fillers on the composite solid-state electrolyte,promising insights are provided for future material design. 展开更多
关键词 Composite solid-state electrolytes Lithium metal anode Dual fillers Interfacial ionic conduction Inert nano-alumina
下载PDF
Healing the structural defects of spinel MnFe_(2)O_(4) to enhance the electrocatalytic activity for oxygen reduction reaction
2
作者 Manting Tang Yue Zou +5 位作者 Zhiyong Jiang Peiyu Ma Zhiyou Zhou Xiaodi Zhu Jun Bao Shi-Gang Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期12-19,I0001,共9页
Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal o... Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal oxides and the poor intrinsic activities of transition metal sites lead to unsatisfactory ORR performance.In this study,eutectic molten salt(EMS)treatment is employed to reconstruct the atomic arrangement of MnFe_(2)O_(4)electrocatalyst as a prototype for enhancing ORR performance.Comprehensive analyses by using XAFS,soft XAS,XPS,and electrochemical methods reveal that the EMS treatment reduces the oxygen vacancies and spinel inverse in MnFe_(2)O_(4)effectively,which improves the electric conductivity and increases the population of more catalytically active Mn^(2+)sites with tetrahedral coordination.Moreover,the enhanced Mn-O interaction after EMS treatment is conducive to the adsorption and activation of O_(2),which promotes the first electron transfer step(generally considered as the ratedetermining step)of the ORR process.As a result,the EMS treated MnFe_(2)O_(4)catalyst delivers a positive shift of 40 mV in the ORR half-wave potential and a two-fold enhanced mass/specific activity.This work provides a convenient approach to manipulate the atomic architecture and local electronic structure of spinel oxides as ORR electrocatalysts and a comprehensive understanding of the structureperformance relationship from the molecular/atomic scale. 展开更多
关键词 Spinel MnFe_(2)O_(4) Oxygen reduction reaction Spinel inverse Oxygen vacancies Eutectic molten salt
下载PDF
The dynamic catalysis of Ga/ZSM-5 catalysts for propane-CO_(2) coupling conversion to aromatics and syngas
3
作者 Yonggui Song Zhong-Pan Hu +12 位作者 Haohao Feng Enze Chen Le Lv Yimo Wu Zhen Liu Yong Jiang Xiaozhi Su Feifei Xu Mingchang Zhu Jingfeng Han Yingxu Wei Svetlana Mintova Zhongmin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期513-519,I0011,共8页
Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owin... Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owing to the quick evolution of the metallic active sites and the complex reaction processes including direct propane aromatization,CO_(2) hydrogenation,reverse water-gas shift reaction,and propane-CO_(2) coupling aromatization.Herein,Ga/ZSM-5 catalysts were constructed to study the dynamic evolution of the metallic active sites and the role of CO_(2) during the propane and CO_(2) coupling reaction.After optimizing the reaction conditions,a notable propane conversion rate of 97.9%and an impressive aromatics selectivity of 80.6%in hydrocarbons can be achieved at the conditions of 550℃and CO_(2)/C_(3)H_(8) of 4.^(13)CO_(2)isotope experiments illustrate that C-atoms of CO_(2) can enter into CO(86.5%)and aromatics(10.8%)during the propane-CO_(2) coupling reaction process.In situ XANES and FTIR spectroscopies at 550℃and H_(2)/C_(3)H_(8) atmosphere reveal that GaO_(x) species can be gradually dispersed into[GaH_(2)]^(+)/[GaH]^(2+)on the Bronsted acid sites of ZSM-5 zeolite during H_(2) and/or C_(3)H_(8) treatment,which are the real active sites for propane-CO_(2) coupling conversion.In situ CO_(2)-FTIR experiments demonstrate that the[GaH_(2)]^(+)/[GaH]^(2+)species can react with CO_(2) and accelerate the propane and CO_(2) coupling process.This work not only presents a cost-effective avenue for CO_(2) utilization,but also contributes to the active site design for improved alkane and CO_(2) activation in coupling reaction system. 展开更多
关键词 Carbon dioxide Propane aromatization Ga/ZSM-5 Gallium hydride Spectroscopy
下载PDF
Electrocatalytic stability of two-dimensional materials
4
作者 Huijie Zhu Youchao Liu +3 位作者 Yongsen Wu Yushan He Yang Cao Sheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期302-320,I0006,共20页
In electrocatalysis,two-dimensional(2D)materials have attracted extensive interests due to their unique electronic structure and physical properties.In recent years,many efforts have been devoted to improving the cata... In electrocatalysis,two-dimensional(2D)materials have attracted extensive interests due to their unique electronic structure and physical properties.In recent years,many efforts have been devoted to improving the catalytic activity of 2D materials.However,the stability of 2D materials under catalytic conditions,as a critical issue,requires better understanding for any practical applications.This review summarizes recent progress in electrocatalytic stability of 2D materials,including four intrinsic factors that affect the stability of 2D materials:1.Weak interactions between 2D catalyst and substrate;2,delamination of 2D catalyst layers;3.metastable phase of 2D materials;4.chemistry and environmental instability of 2D materials.Meanwhile,some corresponding solutions are summarized for each factor.In addition,this review proposes potential routes for developing 2D catalytic materials with both high activity and stability. 展开更多
关键词 2D materials ELECTROCATALYST STABILITY
下载PDF
Coking and decoking chemistry for resource utilization of polycyclic aromatic hydrocarbons(PAHs)and low-carbon process
5
作者 Nan Wang Li Wang +12 位作者 Yuchun Zhi Jingfeng Han Chengwei Zhang Xinqiang Wu Jinling Zhang Linying Wang Benhan Fan Shutao Xu Yijun Zheng Shanfan Lin Renan Wu Yingxu Wei Zhongmin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期105-116,I0004,共13页
Low-carbon process for resource utilization of polycyclic aromatic hydrocarbons(PAHs)in zeolitecatalyzed processes,geared to carbon neutrality-a prominent trend throughout human activities,has been bottlenecked by the... Low-carbon process for resource utilization of polycyclic aromatic hydrocarbons(PAHs)in zeolitecatalyzed processes,geared to carbon neutrality-a prominent trend throughout human activities,has been bottlenecked by the lack of a complete mechanistic understanding of coking and decoking chemistry,involving the speciation and molecular evolution of PAHs,the plethora of which causes catalyst deactivation and forces regeneration,rendering significant CO_(2) emission.Herein,by exploiting the high-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry(MALDI FT-ICR MS),we unveil the missing fingerprints of the mechanistic pathways for both formation and decomposition of cross-linked cage-passing PAHs for SAPO-34-catalyzed,industrially relevant methanol-to-olefins(MTO)as a model reaction.Notable is the molecule-resolved symmetrical signature:their speciation originates exclusively from the direct coupling of in-cage hydrocarbon pool(HCP)species,whereas water-promoted decomposition of cage-passing PAHs initiates with selective cracking of inter-cage local structures at 8-rings followed by deep aromatic steam reforming.Molecular deciphering the reversibly dynamic evolution trajectory(fate)of full-spectrum aromatic hydrocarbons and fulfilling the real-time quantitative carbon resource footprints advance the fundamental knowledge of deactivation and regeneration phenomena(decay and recovery motifs of autocatalysis)and disclose the underlying mechanisms of especially the chemistry of coking and decoking in zeolite catalysis.The positive yet divergent roles of water in these two processes are disentangled.These unprecedented insights ultimately lead us to a steam regeneration strategy with valuable CO and H_(2) as main products,negligible CO_(2) emission in steam reforming and full catalyst activity recovery,which further proves feasible in other important chemical processes,promising to be a sustainable and potent approach that contributes to carbon-neutral chemical industry. 展开更多
关键词 Methanol-to-olefins SAPO-34 Polycyclic aromatic hydrocarbons(PAHs) Catalyst deactivation Catalyst regeneration Low CO_(2)emission
下载PDF
Research perspectives for catalytic valorization of biomass 被引量:3
6
作者 Weiping Deng Ye Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期102-104,I0004,共4页
Efficient utilization of biomass for the supply of energy and synthetic materials would mitigate the heavy reliance on fossil resources and the growing CO_(2) emission, thus contributing to establishing sustainable an... Efficient utilization of biomass for the supply of energy and synthetic materials would mitigate the heavy reliance on fossil resources and the growing CO_(2) emission, thus contributing to establishing sustainable and carbon–neutral societies. Much effort has been devoted to catalytic transformations of lignocellulosic biomass, the most abundant and nonedible form of biomass. 展开更多
关键词 BIOMASS Lignocellulose fractionation CAO/CAC bond cleavage Thermo-/photo-/electro-catalysis Renewable chemicals and materials
下载PDF
An efficient electrocatalytic system composed of nickel oxide and nitroxyl radical for the oxidation of bio-platform molecules to dicarboxylic acids 被引量:1
7
作者 Kai Zhang Zixiang Zhan +5 位作者 Minzhi Zhu Haiwei Lai Xiangyang He Weiping Deng Qinghong Zhang Ye Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期58-67,I0003,共11页
Selective oxidation of biomass and its derivatives to dicarboxylic acids represents a promising route for biomass valorization.However,the co-presence of multiple functional groups in biomass molecules makes the selec... Selective oxidation of biomass and its derivatives to dicarboxylic acids represents a promising route for biomass valorization.However,the co-presence of multiple functional groups in biomass molecules makes the selective oxidation of particular functional a challenging task.Here,we demonstrate an efficient electrocatalytic system consisting of nickel oxide(NiO)and a nitroxyl radical,i.e.,2,2,6,6-tetrame thylpiperidine-1-oxyl(TEMPO)or 4-acetamido-TEMPO(ACT),for the selective oxidation of key bioplatform molecules including glucose,xylose and 5-hydroxymethylfurfural(HMF)into corresponding dicarboxylic acids,i.e.,glucaric acid,xylaric acid,and 2,5-furandicarboxylic acid(FDCA).NiO is clarified as the active catalyst for the oxidation of aldehyde in bio-platform molecules to carboxylic acid,while TEMPO or ACT is responsible for the oxidation of primary alcohol to aldehyde.The combination of NiO and TEMPO or ACT significantly accelerated the tandem oxidation of aldehyde and hydroxyl groups in glucose,xylose and HMF,thus achieving excellent yields(83%-99%)of dicarboxylic acids.Moreover,the combination catalyst enables the selective oxidation of glucose and xylose with high concentrations(e.g.,20 wt%),which offers a promising strategy for biomass valorization. 展开更多
关键词 BIOMASS ELECTROCATALYSIS NIO Nitroxyl radical Dicarboxylic acid
下载PDF
High-throughput mechanistic study of highly selective hydrogen-bonded organic frameworks for electrochemical nitrate reduction to ammonia
8
作者 Shuo Wang Yi Wang +2 位作者 Yunfan Fu Tianfu Liu Guoxiong Wang 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期408-415,I0011,共9页
Hydrogen-bonded organic frameworks(HOFs),an emerging porous macrocyclic materials linked by hydrogen-bond,hold potential for gas separation and storage,sensors,optical,and electrocatalysts.Here,HOF-based electrocataly... Hydrogen-bonded organic frameworks(HOFs),an emerging porous macrocyclic materials linked by hydrogen-bond,hold potential for gas separation and storage,sensors,optical,and electrocatalysts.Here,HOF-based electrocatalysts are rationally developed for nitrates reduction to ammonia,allowing not only to regulate wastewater pollution but also to accomplish carbon-neutral ammonia(NH_(3))synthesis.We preform high-throughput computational screening of thirty-six HOFs with various metals as active sites,denoted as HOF-M1,for nitrate reduction reaction(NO_(3)RR)toward NH_(3).We have implemented a hierarchical four-step screening strategy,and ultimately,HOF-Ti1 was selected based on its exceptional catalytic activity and selectivity in the NO_(3)RR process.Through additional analysis,we discovered that the d band center of the active metal sites serves as an effective parameter for designing and predicting the performance of HOFs in NO_(3)RR.This research not only showcases the immense potential of electrocatalysis in transforming NO_(3)RR into NH_(3)but also provides researchers with a compelling incentive to undertake further experimental investigations. 展开更多
关键词 Nitrate reduction reaction Ammonia synthesis Hydrogen-bonded organic frameworks High-throughput calculations ELECTROCATALYSTS
下载PDF
Machine Learning for Chemistry:Basics and Applications
9
作者 Yun-Fei Shi Zheng-Xin Yang +4 位作者 Sicong Ma Pei-Lin Kang Cheng Shang P.Hu Zhi-Pan Liu 《Engineering》 SCIE EI CAS CSCD 2023年第8期70-83,共14页
The past decade has seen a sharp increase in machine learning(ML)applications in scientific research.This review introduces the basic constituents of ML,including databases,features,and algorithms,and highlights a few... The past decade has seen a sharp increase in machine learning(ML)applications in scientific research.This review introduces the basic constituents of ML,including databases,features,and algorithms,and highlights a few important achievements in chemistry that have been aided by ML techniques.The described databases include some of the most popular chemical databases for molecules and materials obtained from either experiments or computational calculations.Important two-dimensional(2D)and three-dimensional(3D)features representing the chemical environment of molecules and solids are briefly introduced.Decision tree and deep learning neural network algorithms are overviewed to emphasize their frameworks and typical application scenarios.Three important fields of ML in chemistry are discussed:(1)retrosynthesis,in which ML predicts the likely routes of organic synthesis;(2)atomic simulations,which utilize the ML potential to accelerate potential energy surface sampling;and(3)heterogeneous catalysis,in which ML assists in various aspects of catalytic design,ranging from synthetic condition optimization to reaction mechanism exploration.Finally,a prospect on future ML applications is provided. 展开更多
关键词 Machine learning Atomic simulation CATALYSIS Retrosynthesis Neural network potential
下载PDF
Directing in-situ self-optimization of single-atom catalysts for improved oxygen evolution
10
作者 Peiyu Ma Chen Feng +11 位作者 Huihuang Chen Jiawei Xue Xinlong Ma Heng Cao Dongdi Wang Ming Zuo Ruyang Wang Xilan Ding Shiming Zhou Zhirong Zhang Jie Zeng Jun Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期284-290,I0007,共8页
The demand for clean and sustainable energy has encouraged the production of hydrogen from water electrolyzers.To overcome the obstacle to improving the efficiency of water electrolyzers,it is highly desired to fabric... The demand for clean and sustainable energy has encouraged the production of hydrogen from water electrolyzers.To overcome the obstacle to improving the efficiency of water electrolyzers,it is highly desired to fabricate active electrocatalysts for the sluggish oxygen evolution process.However,there is generally an intrinsic gap between the as-prepared and real electrocatalysts due to structure evolution under the oxidative reaction conditions.Here,we combine in-situ anionic leaching and atomic deposition to realize single-atom catalysts with self-optimized structures.The introduced F ions facilitate structural transformation from Co(OH)xF into CoOOH(F),which generates an amorphous edge surface to provide more anchoring sites for Ir single atoms.Meanwhile,the in-situ anionic leaching of F ions elevates the Co valence state of Ir_(1)/CoOOH(F)more significantly than the counterpart without F ions(Ir_(1)/CoOOH),leading to stronger adsorption of oxygenated intermediates.As revealed by electrochemical measurements,the increased Ir loading together with the favored adsorption of*OH intermediates improve the catalytic activity of Ir_(1)/CoOOH(F).Specifically,Ir_(1)/CoOOH(F)delivered a current density of 10 mA cm-2at an overpotential of 238 mV,being lower than 314 mV for Ir_(1)/CoOOH.The results demonstrated the facility of the in-situ optimization process to optimize catalyst structure for improved performance. 展开更多
关键词 ELECTROCATALYSIS Single-Atom Catalysis SELF-OPTIMIZATION Oxygen Evolution
下载PDF
Atomic level engineering of noble metal nanocrystals for energy conversion catalysis 被引量:2
11
作者 Yancai Yao Shiqi Wang +1 位作者 Zhijun Li Yuen Wua 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期604-624,I0014,共22页
It is commonly known that the performance of electrocatalysts is largely influenced by the size,morphology,composition,and crystalline phase of noble metal nanocrystals.However,the limited reserves and high cost of no... It is commonly known that the performance of electrocatalysts is largely influenced by the size,morphology,composition,and crystalline phase of noble metal nanocrystals.However,the limited reserves and high cost of noble metals largely restrict their industrial applications.Along with the development of characterization techniques,theoretical calculations,and advanced material synthesis methods,modulating the electrocatalytic properties of noble metal nanocrystals at the atomic scale(e.g.,monolayer/sub-monolayer,single-atom alloy,ultrafine structure)has been flooding out.Engineering noble metal nanocrystals at the atomic level could not only immensely improve the noble metal atom utilization efficiency and lower the cost,but also boost the catalytic performance.In this review,we summarize the recent advanced progresses of regulating the noble metal nanocrystals at the atomic scale towards energy conversion application.Then,the challenges and perspectives of designing noble metal nanocrystals at the atomic scale in the future are discussed and considered.It is expected that this review will inspire scientists to further study precious metal-based materials for energy-oriented catalysis. 展开更多
关键词 Noble metal Atomic regulation Synthetic strategy ELECTROCATALYSIS
下载PDF
Solar energy‐driven C−H activation of methanol for direct C−C coupling to ethylene glycol with high stability by nitrogen doped tantalum oxide 被引量:1
12
作者 Limei Wang Daxue Du +4 位作者 Biao Zhang Shunji Xie Qinghong Zhang Haiyan Wang Ye Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第9期1459-1467,共9页
Direct photocatalytic coupling of methanol to ethylene glycol(EG)is highly attractive.The reported photocatalysts for this reaction are all metal sulfide semiconductors,which may suffer from photocorrosion and have lo... Direct photocatalytic coupling of methanol to ethylene glycol(EG)is highly attractive.The reported photocatalysts for this reaction are all metal sulfide semiconductors,which may suffer from photocorrosion and have low stability.Thus,the development of non‐sulfide photocatalysts for efficient photocatalytic coupling of methanol to EG and H2 with high stability is urgent but extremely challenging.Herein,the first metal oxide photocatalyst,tantalum‐based semiconductor,is reported for preferential activation of C−H bond within methanol to form hydroxymethyl radical(•CH_(2)OH)and subsequent C−C coupling to EG.Compared with other metal oxide photocatalysts,such as TiO2,ZnO,WO_(3),Nb_(2)O_(5),tantalum oxide(Ta_(2)O_(5))is unique in that it can realize the selective photocatalytic coupling of methanol to EG.The co‐catalyst free nitrogen doped tantalum oxide(2%N‐Ta_(2)O_(5))shows an EG formation rate as high as 4.0 mmol gcat−1 h−1,about 9 times higher than that of Ta_(2)O_(5),with a selectivity higher than 70%.The high charge separation ability of nitrogen doped tantalum oxide plays a key role in its high activity for EG production.This catalyst also shows excellent stability longer than 160 h,which has not been achieved over the reported metal sulfide photocatalysts.Tantalum‐based photocatalyst is an environmentally friendly and highly stable candidate for photocatalytic coupling of methanol to EG. 展开更多
关键词 METHANOL C−H activation C−C coupling Ethylene glycol Tantalum‐based photocatalyst
下载PDF
Promising Electrode and Electrolyte Materials for High-Energy-Density Thin-Film Lithium Batteries 被引量:1
13
作者 Jie Lin Liang Lin +6 位作者 Shasha Qu Dongyuan Deng Yunfan Wu Xiaolin Yan Qingshui Xie Laisen Wang Dongliang Peng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期133-156,共24页
All-solid-state thin-film lithium batteries(TFLBs)are the ideal wireless power sources for on-chip micro/nanodevices due to the significant advantages of safety,portability,and integration.As the bottleneck for increa... All-solid-state thin-film lithium batteries(TFLBs)are the ideal wireless power sources for on-chip micro/nanodevices due to the significant advantages of safety,portability,and integration.As the bottleneck for increasing the energy density of TFLBs,the key components of cathode,electrolyte,and anode are still underway to be improved.In this review,a brief history of TFLBs is first outlined by presenting several TFLB configurations.Based on the state-of-the-art materials developed for lithium-ion batteries(LIBs),the challenges and related strategies for the application of those potential electrode and electrolyte materials in TFLBs are discussed.Given the advanced manufacture and characterization techniques,the recent advances of TFLBs are reviewed for pursuing the high-energy-density and long-termdurability demands,which could guide the development of future TFLBs and analogous all-solid-state lithium batteries. 展开更多
关键词 ALL-SOLID-STATE high-energy-density lithium battery physical vapor deposition thin film
下载PDF
Metal–Organic Gel Leading to Customized Magnetic‑Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances
14
作者 Xin Li Ruizhe Hu +7 位作者 Zhiqiang Xiong Dan Wang Zhixia Zhang Chongbo Liu Xiaojun Zeng Dezhi Chen Renchao Che Xuliang Nie 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期36-52,共17页
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h... Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings. 展开更多
关键词 Metal-organic gels Heterometallic magnetic coupling Radar stealth Thermal insulation Computer simulation technology
下载PDF
Recent advances in quantifying the inactive lithium and failure mechanism of Li anodes in rechargeable lithium metal batteries
15
作者 Mingming Tao Junning Chen +5 位作者 Hongxin Lin Yingao Zhou Danhui Zhao Peizhao Shan Yanting Jin Yong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期226-248,共23页
Lithium metal is considered as the ultimate anode material for the next generation of high-energy density batteries.However,non-uniform lithium dendrite growth,serious electrolyte consumption,and significant volume ch... Lithium metal is considered as the ultimate anode material for the next generation of high-energy density batteries.However,non-uniform lithium dendrite growth,serious electrolyte consumption,and significant volume changes during lithium deposition/stripping processes lead to sustained accumulation of inactive lithium and poor cycling reversibility.Quantifying the formation and evolution of inactive lithium under different conditions and fully evaluating the complex failure modes are the key issues in this challenging field.This article comprehensively reviews recent research progress on the quantification of formation and evolution of inactive lithium detected by different quantitative techniques in rechargeable lithium metal batteries.The key research challenges such as failure mechanism,modification strategies and operando characterization of lithium metal anodes are systematically summarized and prospected.This review provides a new angle of view to understand failure mechanism of lithium metal anodes and inspiration and guidance for the future development of rechargeable lithium metal batteries. 展开更多
关键词 Lithium metal anodes Inactive lithium Quantitative technique Failure mechanism
下载PDF
Mechanism of high Li-ion conductivity in poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network based electrolyte revealed by solid-state NMR
16
作者 Fan Li Tiantian Dong +5 位作者 Yi Ji Lixin Liang Kuizhi Chen Huanrui Zhang Guanglei Cui Guangjin Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期377-383,I0010,共8页
Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked pol... Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked polymers have the potential to further improve the mechanical property without trading off Li-ion conductivity.In this study,focusing on a recently developed cross-linked SPE,i.e.,the one based on poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network(PVCN),we used solid-state nuclear magnetic resonance(NMR)techniques to investigate the fundamental interaction between the chain segments and Li ions,as well as the lithium-ion motion.By utilizing homonuclear/heteronuclear correlation,CP(cross-polarization)kinetics,and spin-lattice relaxation experiments,etc.,we revealed the structural characteristics and their relations to lithium-ion mobilities.It is found that the network formation prevents poly(ethylene oxide)chains from crystallization,which could create sufficient space for segmental tumbling and Li-ion co nductio n.As such,the mechanical property is greatly improved with even higher Li-ion mobilities compared to the poly(vinylene carbonate)or poly(ethylene oxide)based SPE analogues. 展开更多
关键词 ssNMR Lithium-ion mobility CROSS-LINK Solid polymer electrolyte
下载PDF
Magnetic resonance imaging techniques for lithium-ion batteries:Principles and applications
17
作者 Hongxin Lin Yanting Jin +4 位作者 Mingming Tao Yingao Zhou Peizhao Shan Danhui Zhao Yong Yang 《Magnetic Resonance Letters》 2024年第2期22-39,共18页
Operando monitoring of internal and local electrochemical processes within lithium-ion batteries(LIBs)is crucial,necessitating a range of non-invasive,real-time imaging characterization techniques including nuclear ma... Operando monitoring of internal and local electrochemical processes within lithium-ion batteries(LIBs)is crucial,necessitating a range of non-invasive,real-time imaging characterization techniques including nuclear magnetic resonance(NMR)techniques.This review provides a comprehensive overview of the recent applications and advancements of non-invasive magnetic resonance imaging(MRI)techniques in LIBs.It initially introduces the principles and hardware of MRI,followed by a detailed summary and comparison of MRI techniques used for characterizing liquid/solid electrolytes,electrodes and commercial batteries.This encompasses the determination of electrolytes'transport properties,acquisition of ion distribution profile,and diagnosis of battery defects.By focusing on experimental parameters and optimization strategies,our goal is to explore MRI methods suitable to a variety of research subjects,aiming to enhance imaging quality across diverse scenarios and offer critical physical/chemical insights into the ongoing operation processes of LIBs. 展开更多
关键词 Lithium-ion batteries Magnetic resonance imaging(MRI) Electrolytes ELECTRODES Commercial batteries
下载PDF
Defect engineering: A versatile tool for tuning the activation of key molecules in photocatalytic reactions 被引量:9
18
作者 Ning Zhang Chao Gao Yujie Xiong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第10期43-57,共15页
Many photocatalytic reactions such as CO2 reduction and N2 fixation are often limited by the activation of some key molecules. Defects in solid materials can robustly introduce coordinately unsaturated sites to serve ... Many photocatalytic reactions such as CO2 reduction and N2 fixation are often limited by the activation of some key molecules. Defects in solid materials can robustly introduce coordinately unsaturated sites to serve as highly active sites for molecular chemisorption and activation. As a result, rational defect engineering has endowed a versatile approach to further develop photocatalytic applications beyond water splitting. The subtly designed defects in photocatalysts can play critical and decisive roles in molecular activation as proven in recent years. The defects cannot only serve as active sites for molecular chemisorption, but also spatially supply channels for energy and electron transfer. In this review, we aim to summarize the diversiform photocatalytic applications using defects as active sites, including but not limited to CO2 reduction, O2 activation,H2O dissociation, N2 fixation as well as activation of other molecules. In particular, we emphatically outline how the parameters of defects (e.g.,concentration,location,geometric and electronic structures) can serve as the knobs for maneuvering molecular adsorption and activation as well as altering subsequent reaction pathway. Moreover, we underline the remaining challenges at the current stage and the potential development in the future.It is anticipated that this review consolidates the in-depth understanding towards the structure-activity relationship between defects and related reactions. 展开更多
关键词 DEFECT engineering PHOTOCATALYSIS MOLECULAR adsorption MOLECULAR activation Electron transfer
下载PDF
Highly efficient and selective photocatalytic dehydrogenation of benzyl alcohol for simultaneous hydrogen and benzaldehyde production over Ni-decorated Zn_(0.5)Cd_(0.5)S solid solution 被引量:7
19
作者 Lei Zhang Daochuan Jiang +3 位作者 Rana Muhammad Irfan Shan Tang Xin Chen Pingwu Du 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第3期71-77,共7页
Photocatalytic conversion of solar energy into hydrogen and high value-added fine chemicals has attracted increasing attention. Herein, we demonstrate an efficient photocatalytic system for simultaneous hydrogen evolu... Photocatalytic conversion of solar energy into hydrogen and high value-added fine chemicals has attracted increasing attention. Herein, we demonstrate an efficient photocatalytic system for simultaneous hydrogen evolution and benzaldehyde production by dehydrogenation of benzyl alcohol over Nidecorated Zn_(0.5)Cd_(0.5)S solid solution under visible light. The photocatalytic system shows an excellent hydrogen production rate of 666.3 μmol h^(-1) with high stability. The optimal apparent quantum yield of52.5% is obtained at 420 nm. This noble-metal-free photocatalytic system displays much higher activity than pure Zn_(0.5)Cd_(0.5)S and Pt-loaded Zn_(0.5)Cd_(0.5)S solid solution. Further studies reveal that the metallic Ni nanocrystals play an important role in accelerating the separation of photogenerated charge carriers and the subsequent cleavage of α-C–H bond during dehydrogenation of benzyl alcohol. 展开更多
关键词 Photocatalysis BENZYL ALCOHOL oxidation HYDROGEN PRODUCTION Nickel Solid solution Charge separation
下载PDF
From trash to treasure: Chemical recycling and upcycling of commodity plastic waste to fuels, high-valued chemicals and advanced materials 被引量:8
20
作者 Fan Zhang Fang Wang +4 位作者 Xiangyue Wei Yang Yang Shimei Xu Dehui Deng Yu-Zhong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期369-388,I0011,共21页
Of all the existing materials, plastics are no doubt among the most versatile ones. However, the extreme increases in plastic production as well as the difficulty of the material for degradation have led to a huge num... Of all the existing materials, plastics are no doubt among the most versatile ones. However, the extreme increases in plastic production as well as the difficulty of the material for degradation have led to a huge number of plastic wastes. Their recycling rate after disposal is less than 10%, resulting in a series of serious environmental and ecological problems as well as a significant waste of resources. Current recycling methods generally suffer from large energy consumption, the low utilization rate of recycled products with low added value, and produce other waste during the process. Here, we summarized recentlydeveloped chemical recycling ways on commodity plastics, especially new catalytic paths in production of fuels, high-valued chemicals and advanced materials from a single virgin or a mixture of plastic waste,which have emerged as promising ways to valorize waste plastics more economically and environmentally friendly. The new catalyst design criteria as well as innovative catalytic paths and technologies for plastic upcycling are highlighted. Beyond energy recovery by incineration, these approaches demonstrate how waste plastics can be a viable feedstock for energy use with the generation of clean H_(2), high-quality liquid fuels and materials for energy storage, and help inspiring more catalytic process on plastic upcycling to overcome the economical hurdle and building a circular plastic economy. 展开更多
关键词 Chemical recycling Upcycling Commodity plastic Sustainable development Catalytic path
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部