Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Mont...Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Montanari et al.,1983;Hildebrand and Boynton,1988,1990).Evidence for mafic/ultramafic target rocks was reinforced by discovery of chromites,some with shock planar deformation features(PDF),in impact layer samples from sites in southern Colorado and eastern Wyoming(Bohor et al.,1990).However,until now it was unclear whether the chromites originated with an impactor or with terrestrial target rocks.To this end,high-precision 54Cr/52Cr isotope ratios were measured on KT boundary chromites along with known terrestrial chromites.We find a terrestrial 54Cr/52Cr ratio in KT boundary chromites from impact layer samples collected at the above sites over the last several years(Fig.1).Ejected terrestrial chromites suggest the impact sampled terrestrial mafic and/or ultramafic target rocks not known to exist in the Chicxulub target area.展开更多
Speculation that elliptical to circular segments of surface exposed lithospheric mantle belts might mark rims of large terrestrial impact basins suggests that the ophiolite rimmed Sulu Sea, Loyalty and Yucatan basins ...Speculation that elliptical to circular segments of surface exposed lithospheric mantle belts might mark rims of large terrestrial impact basins suggests that the ophiolite rimmed Sulu Sea, Loyalty and Yucatan basins may have resulted from middle Miocene, late Eocene and K-Pg boundary mantle excavating hypervelocity impacts on Earth(Olds, 2019). The Semail ophiolite suggests such a circular rim segment with a ~250 km radius of curvature implying an originally ~500 km diameter impact basin before subsequent deformation/destruction at plate boundaries. Presently the Arabian plate is being actively consumed at the Makran subduction zone(Penney et al., 2017) which evidently will result in subduction of the Gulf of Oman and suturing of the adjacent Semail ophiolite in the near geological future. For large impact basins on the rocky planets, O’Keefe and Ahrens(1993) estimate maximum excavation depth to be roughly 5% of final crater diameter. In this case maximum ejecta source depths of ~25 km are implied, a number roughly comparable with observed thicknesses of crust plus mantle sections for the Semail ophiolite(Aldega et al., 2017) and depths of burial due to over-thrusting(obduction) implied by the exhumed metamorphic sole(Cowan et al., 2014). Hacker et al.(1996) and Roberts et al.(2016) place peak metamorphism timing of the Semail metamorphic sole within uncertainty of the C-T Boundary at 94 Ma. Study of possible correlation of peak obduction timing with end-Cenomanian global extinction plus anoxic events(Wan et al., 2003) and C-T boundary impact ejecta plus tsunami deposits(Monteiro et al., 2001) may be warranted.展开更多
Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Mont...Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Montanari et al.,1983;Hildebrand and Boynton,1988,1990).This evidence,along with ejected terrestrial chromites(Olds et al.,2016)suggest the impact sampled terrestrial mafic and/or ultramafic target rocks which are not known to exist in the Chicxulub target area.Possible resolutions to the paradox are:1)the existence of an unmapped/unknown suture in Yucatan Platform basement,2)an additional small unmapped/unknown impact site on oceanic lithosphere,or 3)an additional large impact on oceanic lithosphere or continental margin transitional to oceanic lithosphere.The third hypothesis is elaborated here since:1)Ophiolites nearest to Chicxulub crater are found in Cuba and apparently were obducted in latest Cretaceous/earliest Danian times(García-Casco,2008),inconsistent with the documented Eocene collision of Cuba with the Bahamas platform;and 2)Cuba hosts the world’s thickest known KT boundary deposits(Iturralde-Vinent,1992;Kiyokawa et al.,2002;Tada et al.,2003).These and geometric considerations suggest oceanic crust and upper mantle rock,exposed as ophiolite in the Greater Antilles island chain,marks the rim of a roughly 700 km diameter impact basin deformed and dismembered from an originally circular form by at least 50 million years of left-lateral shear displacement along the North American-Caribbeantransform plate boundary.展开更多
On the Moon and Mars olivine of probable mantle origin is detected at rims of large Late Heavy Bombardment(LHB) age impact basins for which excavation depth estimates exceed crustal thickness estimates. But lunar Cris...On the Moon and Mars olivine of probable mantle origin is detected at rims of large Late Heavy Bombardment(LHB) age impact basins for which excavation depth estimates exceed crustal thickness estimates. But lunar Crisium size impact basins are not recognized on Earth nor expected in the Phanerozoic from conventional interpretations of crater size frequency distributions. In this study several large circular to elliptical basin structures on Earth, for which hypothesized impact excavation depth would greatly exceed crustal thickness, are examined for the presence of exposed lithospheric mantle, expressed as ophiolite, at the rims. Three Phanerozoic impact basins, modified by plate tectonics and tentatively correlated with "ophiolite obduction" plus global extinction events, are proposed here. These tentatively suggested Phanerozoic impact basins are:(1) Yucatan Basin/Puerto Rico Trench with a Greater Antilles ophiolite rim. Cretaceous-Paleogene Boundary global extinction may correlate with Maastrichtian ophiolite obduction in Southeast Cuba.(2) Loyalty Basin with a New Caledonia ophiolite plus d’Entrecasteaux Ridge rim. Late Eocene global extinction may correlate with obduction of the New Caledonia Peridotite Nappe.(3) Sulu Sea Basin with a Palawan, Sabah etc. ophiolite rim. The Middle Miocene Disruption Event may correlate with ophiolite obduction plus ophiolitic mélange emplacement in Sabah and in Palawan. These originally circular to elliptical belts of exposed lithospheric mantle may serve as strain markers for relative plate motions in the vicinity of plate boundaries during post-impact geologic times. It is further speculated that plate boundaries may be initiated and/or modified by such impacts.展开更多
文摘Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Montanari et al.,1983;Hildebrand and Boynton,1988,1990).Evidence for mafic/ultramafic target rocks was reinforced by discovery of chromites,some with shock planar deformation features(PDF),in impact layer samples from sites in southern Colorado and eastern Wyoming(Bohor et al.,1990).However,until now it was unclear whether the chromites originated with an impactor or with terrestrial target rocks.To this end,high-precision 54Cr/52Cr isotope ratios were measured on KT boundary chromites along with known terrestrial chromites.We find a terrestrial 54Cr/52Cr ratio in KT boundary chromites from impact layer samples collected at the above sites over the last several years(Fig.1).Ejected terrestrial chromites suggest the impact sampled terrestrial mafic and/or ultramafic target rocks not known to exist in the Chicxulub target area.
文摘Speculation that elliptical to circular segments of surface exposed lithospheric mantle belts might mark rims of large terrestrial impact basins suggests that the ophiolite rimmed Sulu Sea, Loyalty and Yucatan basins may have resulted from middle Miocene, late Eocene and K-Pg boundary mantle excavating hypervelocity impacts on Earth(Olds, 2019). The Semail ophiolite suggests such a circular rim segment with a ~250 km radius of curvature implying an originally ~500 km diameter impact basin before subsequent deformation/destruction at plate boundaries. Presently the Arabian plate is being actively consumed at the Makran subduction zone(Penney et al., 2017) which evidently will result in subduction of the Gulf of Oman and suturing of the adjacent Semail ophiolite in the near geological future. For large impact basins on the rocky planets, O’Keefe and Ahrens(1993) estimate maximum excavation depth to be roughly 5% of final crater diameter. In this case maximum ejecta source depths of ~25 km are implied, a number roughly comparable with observed thicknesses of crust plus mantle sections for the Semail ophiolite(Aldega et al., 2017) and depths of burial due to over-thrusting(obduction) implied by the exhumed metamorphic sole(Cowan et al., 2014). Hacker et al.(1996) and Roberts et al.(2016) place peak metamorphism timing of the Semail metamorphic sole within uncertainty of the C-T Boundary at 94 Ma. Study of possible correlation of peak obduction timing with end-Cenomanian global extinction plus anoxic events(Wan et al., 2003) and C-T boundary impact ejecta plus tsunami deposits(Monteiro et al., 2001) may be warranted.
文摘Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Montanari et al.,1983;Hildebrand and Boynton,1988,1990).This evidence,along with ejected terrestrial chromites(Olds et al.,2016)suggest the impact sampled terrestrial mafic and/or ultramafic target rocks which are not known to exist in the Chicxulub target area.Possible resolutions to the paradox are:1)the existence of an unmapped/unknown suture in Yucatan Platform basement,2)an additional small unmapped/unknown impact site on oceanic lithosphere,or 3)an additional large impact on oceanic lithosphere or continental margin transitional to oceanic lithosphere.The third hypothesis is elaborated here since:1)Ophiolites nearest to Chicxulub crater are found in Cuba and apparently were obducted in latest Cretaceous/earliest Danian times(García-Casco,2008),inconsistent with the documented Eocene collision of Cuba with the Bahamas platform;and 2)Cuba hosts the world’s thickest known KT boundary deposits(Iturralde-Vinent,1992;Kiyokawa et al.,2002;Tada et al.,2003).These and geometric considerations suggest oceanic crust and upper mantle rock,exposed as ophiolite in the Greater Antilles island chain,marks the rim of a roughly 700 km diameter impact basin deformed and dismembered from an originally circular form by at least 50 million years of left-lateral shear displacement along the North American-Caribbeantransform plate boundary.
文摘On the Moon and Mars olivine of probable mantle origin is detected at rims of large Late Heavy Bombardment(LHB) age impact basins for which excavation depth estimates exceed crustal thickness estimates. But lunar Crisium size impact basins are not recognized on Earth nor expected in the Phanerozoic from conventional interpretations of crater size frequency distributions. In this study several large circular to elliptical basin structures on Earth, for which hypothesized impact excavation depth would greatly exceed crustal thickness, are examined for the presence of exposed lithospheric mantle, expressed as ophiolite, at the rims. Three Phanerozoic impact basins, modified by plate tectonics and tentatively correlated with "ophiolite obduction" plus global extinction events, are proposed here. These tentatively suggested Phanerozoic impact basins are:(1) Yucatan Basin/Puerto Rico Trench with a Greater Antilles ophiolite rim. Cretaceous-Paleogene Boundary global extinction may correlate with Maastrichtian ophiolite obduction in Southeast Cuba.(2) Loyalty Basin with a New Caledonia ophiolite plus d’Entrecasteaux Ridge rim. Late Eocene global extinction may correlate with obduction of the New Caledonia Peridotite Nappe.(3) Sulu Sea Basin with a Palawan, Sabah etc. ophiolite rim. The Middle Miocene Disruption Event may correlate with ophiolite obduction plus ophiolitic mélange emplacement in Sabah and in Palawan. These originally circular to elliptical belts of exposed lithospheric mantle may serve as strain markers for relative plate motions in the vicinity of plate boundaries during post-impact geologic times. It is further speculated that plate boundaries may be initiated and/or modified by such impacts.