期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Blockchain-Based Decentralized Authentication Model for IoT-Based E-Learning and Educational Environments
1
作者 Osama A.Khashan Sultan Alamri +3 位作者 Waleed Alomoush Mutasem K.Alsmadi Samer Atawneh Usama Mir 《Computers, Materials & Continua》 SCIE EI 2023年第5期3133-3158,共26页
In recent times,technology has advanced significantly and is currently being integrated into educational environments to facilitate distance learning and interaction between learners.Integrating the Internet of Things... In recent times,technology has advanced significantly and is currently being integrated into educational environments to facilitate distance learning and interaction between learners.Integrating the Internet of Things(IoT)into education can facilitate the teaching and learning process and expand the context in which students learn.Nevertheless,learning data is very sensitive and must be protected when transmitted over the network or stored in data centers.Moreover,the identity and the authenticity of interacting students,instructors,and staff need to be verified to mitigate the impact of attacks.However,most of the current security and authentication schemes are centralized,relying on trusted third-party cloud servers,to facilitate continuous secure communication.In addition,most of these schemes are resourceintensive;thus,security and efficiency issues arise when heterogeneous and resource-limited IoT devices are being used.In this paper,we propose a blockchain-based architecture that accurately identifies and authenticates learners and their IoT devices in a decentralized manner and prevents the unauthorized modification of stored learning records in a distributed university network.It allows students and instructors to easily migrate to and join multiple universities within the network using their identity without the need for user re-authentication.The proposed architecture was tested using a simulation tool,and measured to evaluate its performance.The simulation results demonstrate the ability of the proposed architecture to significantly increase the throughput of learning transactions(40%),reduce the communication overhead and response time(26%),improve authentication efficiency(27%),and reduce the IoT power consumption(35%)compared to the centralized authentication mechanisms.In addition,the security analysis proves the effectiveness of the proposed architecture in resisting various attacks and ensuring the security requirements of learning data in the university network. 展开更多
关键词 Blockchain decentralized authentication Internet of Things(IoT) E-LEARNING IoT security
下载PDF
Hybrid Gene Selection Methods for High-Dimensional Lung Cancer Data Using Improved Arithmetic Optimization Algorithm
2
作者 Mutasem K.Alsmadi 《Computers, Materials & Continua》 SCIE EI 2024年第6期5175-5200,共26页
Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression ... Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression microarrays have made it possible to find genetic biomarkers for cancer diagnosis and prediction in a high-throughput manner.Machine Learning(ML)has been widely used to diagnose and classify lung cancer where the performance of ML methods is evaluated to identify the appropriate technique.Identifying and selecting the gene expression patterns can help in lung cancer diagnoses and classification.Normally,microarrays include several genes and may cause confusion or false prediction.Therefore,the Arithmetic Optimization Algorithm(AOA)is used to identify the optimal gene subset to reduce the number of selected genes.Which can allow the classifiers to yield the best performance for lung cancer classification.In addition,we proposed a modified version of AOA which can work effectively on the high dimensional dataset.In the modified AOA,the features are ranked by their weights and are used to initialize the AOA population.The exploitation process of AOA is then enhanced by developing a local search algorithm based on two neighborhood strategies.Finally,the efficiency of the proposed methods was evaluated on gene expression datasets related to Lung cancer using stratified 4-fold cross-validation.The method’s efficacy in selecting the optimal gene subset is underscored by its ability to maintain feature proportions between 10%to 25%.Moreover,the approach significantly enhances lung cancer prediction accuracy.For instance,Lung_Harvard1 achieved an accuracy of 97.5%,Lung_Harvard2 and Lung_Michigan datasets both achieved 100%,Lung_Adenocarcinoma obtained an accuracy of 88.2%,and Lung_Ontario achieved an accuracy of 87.5%.In conclusion,the results indicate the potential promise of the proposed modified AOA approach in classifying microarray cancer data. 展开更多
关键词 Lung cancer gene selection improved arithmetic optimization algorithm and machine learning
下载PDF
Enhancing Mild Cognitive Impairment Detection through Efficient Magnetic Resonance Image Analysis
3
作者 Atif Mehmood Zhonglong Zheng +7 位作者 Rizwan Khan Ahmad Al Smadi Farah Shahid Shahid Iqbal Mutasem K.Alsmadi Yazeed Yasin Ghadi Syed Aziz Shah Mostafa M.Ibrahim 《Computers, Materials & Continua》 SCIE EI 2024年第8期2081-2098,共18页
Neuroimaging has emerged over the last few decades as a crucial tool in diagnosing Alzheimer’s disease(AD).Mild cognitive impairment(MCI)is a condition that falls between the spectrum of normal cognitive function and... Neuroimaging has emerged over the last few decades as a crucial tool in diagnosing Alzheimer’s disease(AD).Mild cognitive impairment(MCI)is a condition that falls between the spectrum of normal cognitive function and AD.However,previous studies have mainly used handcrafted features to classify MCI,AD,and normal control(NC)individuals.This paper focuses on using gray matter(GM)scans obtained through magnetic resonance imaging(MRI)for the diagnosis of individuals with MCI,AD,and NC.To improve classification performance,we developed two transfer learning strategies with data augmentation(i.e.,shear range,rotation,zoom range,channel shift).The first approach is a deep Siamese network(DSN),and the second approach involves using a cross-domain strategy with customized VGG-16.We performed experiments on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset to evaluate the performance of our proposed models.Our experimental results demonstrate superior performance in classifying the three binary classification tasks:NC vs.AD,NC vs.MCI,and MCI vs.AD.Specifically,we achieved a classification accuracy of 97.68%,94.25%,and 92.18%for the three cases,respectively.Our study proposes two transfer learning strategies with data augmentation to accurately diagnose MCI,AD,and normal control individuals using GM scans.Our findings provide promising results for future research and clinical applications in the early detection and diagnosis of AD. 展开更多
关键词 Alzheimer’s disease mild cognitive impairment normal control transfer learning CLASSIFICATION augmentation
下载PDF
Improved Whale Optimization with Local-Search Method for Feature Selection 被引量:1
4
作者 Malek Alzaqebah Mutasem KAlsmadi +12 位作者 Sana Jawarneh Jehad Saad Alqurni Mohammed Tayfour Ibrahim Almarashdeh Rami Mustafa A.Mohammad Fahad A.Alghamdi Nahier Aldhafferi Abdullah Alqahtani Khalid A.Alissa Bashar A.Aldeeb Usama A.Badawi Maram Alwohaibi Hayat Alfagham 《Computers, Materials & Continua》 SCIE EI 2023年第4期1371-1389,共19页
Various feature selection algorithms are usually employed to improve classification models’overall performance.Optimization algorithms typically accompany such algorithms to select the optimal set of features.Among t... Various feature selection algorithms are usually employed to improve classification models’overall performance.Optimization algorithms typically accompany such algorithms to select the optimal set of features.Among the most currently attractive trends within optimization algorithms are hybrid metaheuristics.The present paper presents two Stages of Local Search models for feature selection based on WOA(Whale Optimization Algorithm)and Great Deluge(GD).GD Algorithm is integrated with the WOA algorithm to improve exploitation by identifying the most promising regions during the search.Another version is employed using the best solution found by the WOA algorithm and exploited by the GD algorithm.In addition,disruptive selection(DS)is employed to select the solutions from the population for local search.DS is chosen to maintain the diversity of the population via enhancing low and high-quality solutions.Fifteen(15)standard benchmark datasets provided by the University of California Irvine(UCI)repository were used in evaluating the proposed approaches’performance.Next,a comparison was made with four population-based algorithms as wrapper feature selection methods from the literature.The proposed techniques have proved their efficiency in enhancing classification accuracy compared to other wrapper methods.Hence,the WOA can search effectively in the feature space and choose the most relevant attributes for classification tasks. 展开更多
关键词 OPTIMIZATION whale optimization algorithm great deluge algorithm feature selection and classification
下载PDF
P-ROCK: A Sustainable Clustering Algorithm for Large Categorical Datasets
5
作者 Ayman Altameem Ramesh Chandra Poonia +2 位作者 Ankit Kumar Linesh Raja Abdul Khader Jilani Saudagar 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期553-566,共14页
Data clustering is crucial when it comes to data processing and analytics.The new clustering method overcomes the challenge of evaluating and extracting data from big data.Numerical or categorical data can be grouped.... Data clustering is crucial when it comes to data processing and analytics.The new clustering method overcomes the challenge of evaluating and extracting data from big data.Numerical or categorical data can be grouped.Existing clustering methods favor numerical data clustering and ignore categorical data clustering.Until recently,the only way to cluster categorical data was to convert it to a numeric representation and then cluster it using current numeric clustering methods.However,these algorithms could not use the concept of categorical data for clustering.Following that,suggestions for expanding traditional categorical data processing methods were made.In addition to expansions,several new clustering methods and extensions have been proposed in recent years.ROCK is an adaptable and straightforward algorithm for calculating the similarity between data sets to cluster them.This paper aims to modify the algo-rithm by creating a parameterized version that takes specific algorithm parameters as input and outputs satisfactory cluster structures.The parameterized ROCK algorithm is the name given to the modified algorithm(P-ROCK).The proposed modification makes the original algorithm moreflexible by using user-defined parameters.A detailed hypothesis was developed later validated with experimental results on real-world datasets using our proposed P-ROCK algorithm.A comparison with the original ROCK algorithm is also provided.Experiment results show that the proposed algorithm is on par with the original ROCK algorithm with an accuracy of 97.9%.The proposed P-ROCK algorithm has improved the runtime and is moreflexible and scalable. 展开更多
关键词 ROCK K-means algorithm clustering approaches unsupervised learning K-histogram
下载PDF
Curve interpolation model for visualising disjointed neural elements
6
作者 Mohd Shafry Mohd Rahim Norhasana Razzali +2 位作者 Mohd Shahrizal Sunar Ayman Abdualaziz Abdullah Amjad Rehman 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第21期1637-1644,共8页
Neuron cell are built from a myriad of axon and denddte structures. It transmits electrochemical signals between the brain and the nervous system. Three-dimensional visualization of neuron structure could help to faci... Neuron cell are built from a myriad of axon and denddte structures. It transmits electrochemical signals between the brain and the nervous system. Three-dimensional visualization of neuron structure could help to facilitate deeper understanding of neuron and its models. An accurate neuron model could aid understanding of brain's functionalities, diagnosis and knowledge of entire nervous system. Existing neuron models have been found to be defective in the aspect of realism. Whereas in the actual biological neuron, there is continuous growth as the soma extending to the axon and the dendrite; but, the current neuron visualization models present it as disjointed segments that has greatly mediated effective realism. In this research, a new reconstruction model comprising of the Bounding Cylinder, Curve Interpolation and Gouraud Shading is proposed to visualize neuron model in order to improve realism. The reconstructed model is used to design algorithms for generating neuron branching from neuron SWC data. The Bounding Cylinder and Curve Interpolation methods are used to improve the connected segments of the neuron model using a series of cascaded cylinders along the neuron's connection path. Three control points are proposed between two adjacent neuron segments. Finally, the model is rendered with Gouraud Shading for smoothening of the model surface. This produce a near-perfection model of the natural neurons with attended realism. The model is validated by a group of bioinformatics analysts' responses to a predefined survey. The result shows about 82% acceptance and satisfaction rate. 展开更多
关键词 bounding cylinder curve interpolation reconstruction model Gouraud shading neuralregeneration
下载PDF
An Enhanced Particle Swarm Optimization for ITC2021 Sports Timetabling
7
作者 Mutasem K.Alsmadi Ghaith M.Jaradat +5 位作者 Malek Alzaqebah Ibrahim A.Lmarashdeh Fahad A.Alghamdi Rami Mustafa A.Mohammad Nahier Aldhafferi Abdullah Alqahtani 《Computers, Materials & Continua》 SCIE EI 2022年第7期1995-2014,共20页
Timetabling problem is among the most difficult operational tasks and is an important step in raising industrial productivity,capability,and capacity.Such tasks are usually tackled using metaheuristics techniques that... Timetabling problem is among the most difficult operational tasks and is an important step in raising industrial productivity,capability,and capacity.Such tasks are usually tackled using metaheuristics techniques that provide an intelligent way of suggesting solutions or decision-making.Swarm intelligence techniques including Particle Swarm Optimization(PSO)have proved to be effective examples.Different recent experiments showed that the PSO algorithm is reliable for timetabling in many applications such as educational and personnel timetabling,machine scheduling,etc.However,having an optimal solution is extremely challenging but having a sub-optimal solution using heuristics or metaheuristics is guaranteed.This research paper seeks the enhancement of the PSO algorithm for an efficient timetabling task.This algorithm aims at generating a feasible timetable within a reasonable time.This enhanced version is a hybrid dynamic adaptive PSO algorithm that is tested on a round-robin tournament known as ITC2021 which is dedicated to sports timetabling.The competition includes several soft and hard constraints to be satisfied in order to build a feasible or sub-optimal timetable.It consists of three categories of complexities,namely early,test,and middle instances.Results showed that the proposed dynamic adaptive PSO has obtained feasible timetables for almost all of the instances.The feasibility is measured by minimizing the violation of hard constraints to zero.The performance of the dynamic adaptive PSO is evaluated by the consumed computational time to produce a solution of feasible timetable,consistency,and robustness.The dynamic adaptive PSO showed a robust and consistent performance in producing a diversity of timetables in a reasonable computational time. 展开更多
关键词 Sports timetabling particle swarm optimization ITC2021 roundrobin tournament dynamic adaptive
下载PDF
IoT Devices Authentication Using Artificial Neural Network
8
作者 Syed Shabih Ul Hasan Anwar Ghani +2 位作者 Ikram Ud Din Ahmad Almogren Ayman Altameem 《Computers, Materials & Continua》 SCIE EI 2022年第2期3701-3716,共16页
User authentication is one of the critical concerns of information security.Users tend to use strong textual passwords,but remembering complex passwords is hard as they often write it on a piece of paper or save it in... User authentication is one of the critical concerns of information security.Users tend to use strong textual passwords,but remembering complex passwords is hard as they often write it on a piece of paper or save it in their mobile phones.Textual passwords are slightly unprotected and are easily attackable.The attacks include dictionary,shoulder surfing,and brute force.Graphical passwords overcome the shortcomings of textual passwords and are designed to aid memorability and ease of use.This paper proposes a Process-based Pattern Authentication(PPA)system for Internet of Things(IoT)devices that does not require a server to maintain a static password of the login user.The server stores user’s information,which they provide at the time of registration,i.e.,the R-code and the symbol,but the P-code,i.e.,the actual password,will change with every login attempt of users.In this scheme,users may draw a pattern on the basis of calculation from the P-code and Rcode in the PPA pattern,and can authenticate themselves using their touch dynamic behaviors through Artificial Neural Network(ANN).The ANN is trained on touch behaviors of legitimate users reporting superior performance over the existing methods.For experimental purposes,PPA is implemented as a prototype on a computer system to carry out experiments for the evaluation in terms of memorability and usability.The experiments show that the system has an effect of 5.03%of the False Rejection Rate(FRR)and 4.36%of the False Acceptance Rate(FAR),respectively. 展开更多
关键词 Implicit authentication behavioral authentication artificial neural network processed pattern authentication
下载PDF
New Decision-Making Technique Based on Hurwicz Criteria for Fuzzy Ranking
9
作者 Deepak Sukheja Javaid Ahmad Shah +5 位作者 G.Madhu K.Sandeep Kautish Fahad A.Alghamdi Ibrahim.S.Yahia El-Sayed M.El-Kenawy Ali Wagdy Mohamed 《Computers, Materials & Continua》 SCIE EI 2022年第12期4595-4609,共15页
Efficient decision-making remains an open challenge in the research community,and many researchers are working to improve accuracy through the use of various computational techniques.In this case,the fuzzification and... Efficient decision-making remains an open challenge in the research community,and many researchers are working to improve accuracy through the use of various computational techniques.In this case,the fuzzification and defuzzification processes can be very useful.Defuzzification is an effective process to get a single number from the output of a fuzzy set.Considering defuzzification as a center point of this research paper,to analyze and understand the effect of different types of vehicles according to their performance.In this paper,the multi-criteria decision-making(MCDM)process under uncertainty and defuzzification is discussed by using the center of the area(COA)or centroidmethod.Further,to find the best solution,Hurwicz criteria are used on the defuzzified data.Anewdecision-making technique is proposed using Hurwicz criteria for triangular and trapezoidal fuzzy numbers.The proposed technique considers all types of decision makers’perspectives such as optimistic,neutral,and pessimistic which is crucial in solving decisionmaking problems.A simple case study is used to demonstrate and discuss the Centroid Method and Hurwicz Criteria for measuring risk attitudes among decision-makers.The significance of the proposed defuzzification method is demonstrated by comparing it to previous defuzzification procedures with its application. 展开更多
关键词 DEFUZZIFICATION DECISION-MAKING fuzzy numbers Hurwicz multicriteria decision-making ranking order
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部