To reduce the design burden of Aerospace Vehicles(ASVs)control systems,this paper proposes a multi-constrained robust trajectory optimization method,which provides a good front-end input for the control system.Differ ...To reduce the design burden of Aerospace Vehicles(ASVs)control systems,this paper proposes a multi-constrained robust trajectory optimization method,which provides a good front-end input for the control system.Differ from the conventional aircraft,some control performance of ASVs is not only related to the model parameters,but also affected by the flight status.Therefore,the robust optimization method combines this characteristic of ASVs,sets the control performance as one of the optimization objectives,and considers the influence of parameter uncertainty.In this method,the polynomial chaos expansion algorithm is used to transform the trajectory optimization problem with uncertain parameters into the equivalent deterministic robust trajectory optimization problem.Finally,compared with traditional deterministic trajectory optimization methods to illustrate the effectiveness of proposed control optimization method.展开更多
Considering the strong nonlinearity of Unmanned Aerial Vehicles(UAVs)resulting from high Angle of Attack(AOA)and fast maneuvering,we present a multi-model predictive control strategy for UAV maneuvering,which has a sm...Considering the strong nonlinearity of Unmanned Aerial Vehicles(UAVs)resulting from high Angle of Attack(AOA)and fast maneuvering,we present a multi-model predictive control strategy for UAV maneuvering,which has a small amount of online calculation.Firstly,we divide the maneuver envelope of UAV into several sub-regions on the basis of the gap metric theory.A novel algorithm is then developed to determine the ploytopic model for each sub-region.According to this,a Robust Model Predictive Control based on the Idea of Comprehensive optimization(ICE-RMPC)is proposed.The control law is designed offline and optimized online to reduce the computational expense.Then,the ICE-RMPC method is applied to design the controllers of sub-regions.In addition,to guarantee the stability of whole closed-loop system,a multi-model switching control strategy based on guardian maps is put forward.Finally,the tracking performance of proposed control strategy is demonstrated by an illustrative example.展开更多
基金co-supported by the Fundamental Research Funds for the Central Universities,China(No.NS2021061)the Six Talent Peaks Project in Jiangsu Province,China(No.KTHY-025)+2 种基金the China Postdoctoral Science Foundation No.2020M681586)the Natural Science Foundation of Jiangsu Province(No.BK20200437)the Interdisciplinary Innovation Foundation for doctoral students of Nanjing University of Aeronautics and Astronautics(No.KXKCXJJ202008).
文摘To reduce the design burden of Aerospace Vehicles(ASVs)control systems,this paper proposes a multi-constrained robust trajectory optimization method,which provides a good front-end input for the control system.Differ from the conventional aircraft,some control performance of ASVs is not only related to the model parameters,but also affected by the flight status.Therefore,the robust optimization method combines this characteristic of ASVs,sets the control performance as one of the optimization objectives,and considers the influence of parameter uncertainty.In this method,the polynomial chaos expansion algorithm is used to transform the trajectory optimization problem with uncertain parameters into the equivalent deterministic robust trajectory optimization problem.Finally,compared with traditional deterministic trajectory optimization methods to illustrate the effectiveness of proposed control optimization method.
基金co-supported by the National Natural Science Foundation of China(Nos.61873126,11572149)。
文摘Considering the strong nonlinearity of Unmanned Aerial Vehicles(UAVs)resulting from high Angle of Attack(AOA)and fast maneuvering,we present a multi-model predictive control strategy for UAV maneuvering,which has a small amount of online calculation.Firstly,we divide the maneuver envelope of UAV into several sub-regions on the basis of the gap metric theory.A novel algorithm is then developed to determine the ploytopic model for each sub-region.According to this,a Robust Model Predictive Control based on the Idea of Comprehensive optimization(ICE-RMPC)is proposed.The control law is designed offline and optimized online to reduce the computational expense.Then,the ICE-RMPC method is applied to design the controllers of sub-regions.In addition,to guarantee the stability of whole closed-loop system,a multi-model switching control strategy based on guardian maps is put forward.Finally,the tracking performance of proposed control strategy is demonstrated by an illustrative example.