期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ARIMA and Facebook Prophet Model in Google Stock Price Prediction 被引量:2
1
作者 Beijia Jin Shuning Gao Zheng Tao 《Proceedings of Business and Economic Studies》 2022年第5期60-66,共7页
We use the Autoregressive Integrated Moving Average(ARIMA)model and Facebook Prophet model to predict the closing stock price of Google during the COVID-19 pandemic as well as compare the accuracy of these two models... We use the Autoregressive Integrated Moving Average(ARIMA)model and Facebook Prophet model to predict the closing stock price of Google during the COVID-19 pandemic as well as compare the accuracy of these two models’predictions.We first examine the stationary of the dataset and use ARIMA(0,1,1)to make predictions about the stock price during the pandemic,then we train the Prophet model using the stock price before January 1,2021,and predict the stock price after January 1,2021,to present.We also make a comparison of the prediction graphs of the two models.The empirical results show that the ARIMA model has a better performance in predicting Google’s stock price during the pandemic. 展开更多
关键词 ARIMA model Facebook Prophet model Stock price prediction Financial market Time series
下载PDF
Exploring Apple’s Stock Price Volatility Using Five GARCH Models
2
作者 Sihan Fu Kexin He +1 位作者 Jialin Li Zheng Tao 《Proceedings of Business and Economic Studies》 2022年第5期137-145,共9页
The financial market is the core of national economic development,and stocks play an important role in the financial market.Analyzing stock prices has become the focus of investors,analysts,and people in related field... The financial market is the core of national economic development,and stocks play an important role in the financial market.Analyzing stock prices has become the focus of investors,analysts,and people in related fields.This paper evaluates the volatility of Apple Inc.(AAPL)returns using five generalized autoregressive conditional heteroskedasticity(GARCH)models:sGARCH with constant mean,GARCH with sstd,GJR-GARCH,AR(1)GJR-GARCH,and GJR-GARCH in mean.The distribution of AAPL’s closing price and earnings data was analyzed,and skewed student t-distribution(sstd)and normal distribution(norm)were used to further compare the data distribution of the five models and capture the shape,skewness,and loglikelihood in Model 4-AR(1)GJR-GARCH.Through further analysis,the results showed that Model 4,AR(1)GJR-GARCH,is the optimal model to describe the volatility of the return series of AAPL.The analysis of the research process is both,a process of exploration and reflection.By analyzing the stock price of AAPL,we reflect on the shortcomings of previous analysis methods,clarify the purpose of the experiment,and identify the optimal analysis model. 展开更多
关键词 Financial market Stock price VOLATILITY GARCH model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部