期刊文献+
共找到173篇文章
< 1 2 9 >
每页显示 20 50 100
Design and Fabrication of Ceramic Catalytic Membrane Reactors for Green Chemical Engineering Applications 被引量:4
1
作者 Guangru Zhang Wanqin Jin Nanping Xu 《Engineering》 SCIE EI 2018年第6期848-860,共13页
Catalytic membrane reactors(CMRs),which synergistically carry out separations and reactions,are expected to become a green and sustainable technology in chemical engineering.The use of ceramic membranes in CMRs is bei... Catalytic membrane reactors(CMRs),which synergistically carry out separations and reactions,are expected to become a green and sustainable technology in chemical engineering.The use of ceramic membranes in CMRs is being widely considered because it permits reactions and separations to be carried out under harsh conditions in terms of both temperature and the chemical environment.This article presents the two most important types of CMRs:those based on dense mixed-conducting membranes for gas separation,and those based on porous ceramic membranes for heterogeneous catalytic processes.New developments in and innovative uses of both types of CMRs over the last decade are presented,along with an overview of our recent work in this field.Membrane reactor design,fabrication,and applications related to energy and environmental areas are highlighted.First,the configuration of membranes and membrane reactors are introduced for each of type of membrane reactor.Next,taking typical catalytic reactions as model systems,the design and optimization of CMRs are illustrated.Finally,challenges and difficulties in the process of industrializing the two types of CMRs are addressed,and a view of the future is outlined. 展开更多
关键词 DENSE CERAMIC MEMBRANE Porous CERAMIC MEMBRANE CATALYTIC MEMBRANE REACTOR Gas separation Heterogeneous CATALYSIS
下载PDF
Towards carbon neutrality of calcium carbide-based acetylene production with sustainable biomass resources
2
作者 Peng Jiang Guanhan Zhao +4 位作者 Hao Zhang Tuo Ji Liwen Mu Xiaohua Lu Jiahua Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1068-1078,共11页
Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but a... Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but also the raw material for CaC_(2) synthesis is from coal.Here,a comprehensive biomass-to-acetylene process was constructed that integrated several units including biomass pyrolysis,oxygen-thermal CaC_(2) fabrication and calcium looping.For comparison,a coal-to-acetylene process was also established by using coal as feedstock.The carbon efficiency,energy efficiency and environmental impacts of the bio-based calcium carbide acetylene(BCCA)and coal-based calcium carbide acetylene(CCCA)processes were systematically analyzed.Moreover,the environmental impacts were further evaluated by applying thermal integration at system level and energy substitution in CaC_(2) furnace.Even though the BCCA process showed lower carbon efficiency and energy efficiency than that of the CCCA process,life cycle assessment demonstrated the BCCA(1.873 kgCO_(2eq) kg-prod^(-1))a lower carbon footprint process which is 0.366 kgCO_(2eq) kg-prod^(-1) lower compared to the CCCA process.With sustainable energy(biomass power)substitution in CaC_(2) furnace,an even lower GWP value of 1.377 kgCO_(2eq) kg-prod^(-1) can be achieved in BCCA process.This work performed a systematic analysis on integrating biomass into industrial acetylene production,and revealed the positive role of biomass as raw material(carbon)and energy supplier. 展开更多
关键词 Biomass pyrolysis CO_(2)mitigation Calcium carbide ACETYLENE Calcium loop
下载PDF
Regulation of interlayer channels of graphene oxide nanosheets in ultra-thin Pebax mixed-matrix membranes for CO_(2) capture
3
作者 Feifan Yang Yuanhang Jin +5 位作者 Jiangying Liu Haipeng Zhu Rong Xu Fenjuan Xiangli Gongping Liu Wanqin Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期257-267,共11页
For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(... For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(MMMs)incorporated by graphene oxide(GO),in which the interlayer channels were regulated to optimize the CO_(2)/N_(2) separation performance.Various membrane preparation conditions were systematically investigated on the influence of the membrane structure and separation performance,including the lateral size of GO nanosheets,GO loading,thermal reduction temperature,and time.The results demonstrated that the precisely regulated interlayer channel of GO nanosheets can rapidly provide CO_(2)-selective transport channels due to the synergetic effects of size sieving and preferential adsorption.The GO/Pebax ultra-thin MMMs exhibited CO_(2)/N_(2) selectivity of 72 and CO_(2) permeance of 400 GPU(1 GPU=106 cm^(3)(STP)·cm^(2)·s^(-1)·cmHg^(-1)),providing a promising candidate for CO_(2) capture. 展开更多
关键词 Mixed-matrix membrane Ultra-thin membrane Pebax Graphene oxide CO_(2) capture
下载PDF
Synthesis of a High-Efficiency Demulsifier and Study on Optimal Demulsification Conditions
4
作者 Zhu Shuai Zhang YingYu Gui Xia 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期107-115,共9页
Oil and water separation has always been a top priority in the oil industry.In this study,a series of hyperbranched fluorinated polyamine-amine polymers(HFPA1-5)were synthesized directly using an improved“one-pot met... Oil and water separation has always been a top priority in the oil industry.In this study,a series of hyperbranched fluorinated polyamine-amine polymers(HFPA1-5)were synthesized directly using an improved“one-pot method.”The highly active fluorinated p-trifluoromethylaniline was used as the core raw material,while diethylenetriamine and methyl acrylate were used as the chain segment.A hyperbranched fluorine-containing polyamine-amine demulsifier(NHFPA6)was obtained through nano-grafting copolymerization of HFPA5.To enhance the demulsification and dehydration performance,the copolymerized HFPA6 was modified and combined.Then,the effects of the combination ratio,demulsifier concentration,demulsification time,and demulsification temperature on the demulsification effect were investigated.The results revealed that a combination ratio of DE-401:NHFPA6=1:1,a demulsification temperature of 50℃,a demulsification time of 60 min,and a demulsifier concentration of 150 mg/L yielded a dehydration rate as high as 99.80%.A response surface optimization design of demulsification conditions was performed.The model verified that the optimal demulsification conditions were 50℃,300 mg/L,and 90 min.However,considering the economic benefits of factories,it is more favorable to select demulsification conditions with a shorter time and lower concentration when the dehydration standard is met.Therefore,the demulsification conditions were selected as 50℃,150 mg/L,and 60 min.Compared to existing demulsifiers,the demulsifier developed in this study exhibits a lower demulsification temperature and higher demulsification efficiency. 展开更多
关键词 HYPERBRANCHED fluorinated polyamine-amine nano-SiO_(2)
下载PDF
A heterogeneous double chamber electro-Fenton with high production of H_(2)O_(2) using La–CeO_(2) modified graphite felt as cathode 被引量:1
5
作者 Suhang Jiang Lijuan Tan +2 位作者 Yujia Tong Lijian Shi Weixing Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期98-105,共8页
Hydrogen peroxide synthesis by electro-reduction of O_(2) to substitute the current anthraquinone process has attracted a great deal of attention. Low oxygen utilization rate and low hydrogen peroxide production remai... Hydrogen peroxide synthesis by electro-reduction of O_(2) to substitute the current anthraquinone process has attracted a great deal of attention. Low oxygen utilization rate and low hydrogen peroxide production remain obstacles to electro-Fenton application. In situ H_(2)O_(2) generated by electrochemical reaction depends on the electrochemical performance of the cathode and the structure of the reactor. Here, novel graphite felt(GF) modified by La-doped CeO_(2)(La-CeO_(2)) was developed as a cathode. A new double chamber electro-Fenton reactor was proposed, where an organic ultrafiltration membrane was used to prevent H_(2)O_(2) from spreading to the anode. The effects of hydrothermal temperature, time and urea concentration on the electrochemical properties of graphite felt were investigated. The accumulated concentration of H_(2)O_(2) on the modified cathode reached 218.4 mg·L^(-1)in 1 h when the optimal conditions of hydrothermal temperature 120 ℃ and urea concentration 0.55%(mass) in 24 h. The degradation rate of methyl orange reached 98.29%. The new electro-Fenton reactor can efficiently produce hydrogen peroxide to degrade various organic substances and has a high potential for treating wastewater in the chemical industry. 展开更多
关键词 Hydrogen peroxide Graphite felt modification Double chamber reactor Organic ultrafiltration membrane
下载PDF
In situ formation of self-antistacking FeCoO_(x) on N-doped graphene:A 3D-on-2D nanoarchitecture for long-life Zn-air batteries 被引量:2
6
作者 Zehao Zheng Cuie Wang +5 位作者 Peng Mao Yijun Zhu Ran Ran Wei Zhou Kaiming Liao Zongping Shao 《Carbon Energy》 SCIE CSCD 2023年第3期87-97,共11页
Before the practical application of rechargeable Zn-air batteries(ZABs),a critical issue regarding the inherent slow reaction kinetics of the oxygen reduction(ORR)and oxygen evolution(OER)must be addressed.Here,we fab... Before the practical application of rechargeable Zn-air batteries(ZABs),a critical issue regarding the inherent slow reaction kinetics of the oxygen reduction(ORR)and oxygen evolution(OER)must be addressed.Here,we fabricate a cost-effective bifunctional oxygen electrocatalyst with a self-antistacking structure,where three-dimensional(3D)Fe-Co bimetallic oxide particles(FeCoO_(x))are directly grown on 2D N-doped graphene(NG).The in situ grown FeCoO_(x)particles can alleviate the NG interlaminar restacking,ensuring abundant channels for diffusion of O_(2)/OH−species,while the NG allows rapid electron flow.Benefiting from this self-antistacking 3D-on-2D structure and synergetic electrocatalysis,FeCoO_(x)@NG demonstrated excellent activity for both ORR and OER(ΔE=0.78 V),which is superior to that of the binary mixtures of Pt/C and RuO_(2)(ΔE=0.83 V).A homemade ZAB with 20%-FeCoO_(x)@NG delivers a specific capacity of 758.9 mAh g^(−1),a peak power density of 215 mW cm^(−2),and long-term cyclability for over 400 h.These research results suggest that designing a bimetallic oxide/N-doped carbon 3D-on-2D nanoarchitecture using an in situ growth strategy is an attractive and feasible solution to overcome electrocatalytic problems in ZABs. 展开更多
关键词 antistacking nanostructure in situ growth oxygen electrocatalysts Zn-air batteries
下载PDF
Fabrication of adsorbents with enhanced CuⅠ stability: Creating a superhydrophobic microenvironment through grafting octadecylamine
7
作者 Zida Ma Yuxia Li +2 位作者 Mengmeng Jin Xiaoqin Liu Linbing Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期41-48,共8页
In atmospheric conditions, CuⅠis easily oxidized to CuⅡdue to the coexistence of moisture and oxygen.The poor oxidation inhibition of CuⅠrestricts the practical application of CuⅠ-containing materials.Herein we in... In atmospheric conditions, CuⅠis easily oxidized to CuⅡdue to the coexistence of moisture and oxygen.The poor oxidation inhibition of CuⅠrestricts the practical application of CuⅠ-containing materials.Herein we introduce an approach to construct a superhydrophobic microenvironment in CuⅠfunctionalized metal–organic frameworks by coordinatedly grafting organic amine compounds onto open metal sites(OMSs), which can hinder the accessibility of moisture to pores thereby enhancing the stability of CuⅠ. As a proof of concept, MIL-101(Cr) with abundant OMSs and octadecylamine(OA)with long hydrophobic alkyl groups are used as carrier and surface coating. As superhydrophobic porous materials, the resultant CuⅠM-OA exhibits improved CuⅠstability in addition to retaining high crystallinity and intact porosity while almost all CuⅠis oxidized in hydrophilic CuⅠM upon exposure in a humid atmosphere for 30 h. CuⅠM-OA owns excellent adsorption desulfurization performance(ADS) with regard to thiophene, benzothiophene, and 4,6-dimethyl dibenzothiophene. Even from hydrated fuel, the adsorption performance of CuⅠM-OA maintains well while the adsorption capacity of CuⅠM decreases to 7% after4 cycles. The remarkable moisture resistance, CuⅠstability, and high porosity make the current adsorbent CuⅠM-OA highly promising for the practical ADS process. 展开更多
关键词 π-Complexation Metal-organic frameworks SUPERHYDROPHOBICITY Cu I stability Adsorptive desulfurization(ADS)
下载PDF
Visible-light degradation of azo dyes by imine-linked covalent organic frameworks
8
作者 Hongbo Xue Sen Xiong +1 位作者 Kai Mi Yong Wang 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期194-199,共6页
Covalent organic frameworks(COFs)are nanoporous crystalline polymers with densely conjugated structures.This work discovers that imine-linked COFs exhibit remarkable photodegradation efficiency to azo dyes dissolved i... Covalent organic frameworks(COFs)are nanoporous crystalline polymers with densely conjugated structures.This work discovers that imine-linked COFs exhibit remarkable photodegradation efficiency to azo dyes dissolved in water.Visible light generates different types of radicals from COFs,and superoxide radicals break N=N bonds in dye molecules,resulting in 100%degradation of azo dyes within 1 h.In contrast,these dyes cannot be degraded by conventionally used photocatalysts,for example,TiO2.Importantly,the COF photocatalysts can be recovered from the dye solutions and re-used to degrade azo dyes for multiple times without loss of degradation efficiency.This work provides an efficient strategy to degrade synthetic dyes,and we expect that COFs with designable structures may use as new photocatalysts for other important applications. 展开更多
关键词 Covalent organic frameworks DYES Photocatalytic degradation Porous polymer Water pollution
下载PDF
Synthesis of an IMF zeolite membrane for the separation of xylene isomer
9
作者 Wenwen Zhang Zhigang Xue +4 位作者 Liyun Cui Haoliang Gao Di Zhao Rongfei Zhou Weihong Xing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期205-211,共7页
The synthesis of a continuous IMF zeolite membrane was fabricated on tubular substrates by seeded growth for the first time. The straight channels of IMF zeolite with diameters of 0.53–0.59 nm are distinguishable for... The synthesis of a continuous IMF zeolite membrane was fabricated on tubular substrates by seeded growth for the first time. The straight channels of IMF zeolite with diameters of 0.53–0.59 nm are distinguishable for p-xylene from o-xylene molecules. Pure IMF-phase high-silica IM-5 zeolite seeds with uniform and fine crystal size were fabricated by a new sonication-assisted aging process. The seeds were coated on the support by dipcoating and induced the formation of continuous membrane. Separation performance in p-/o-xylene mixture was investigated at various temperature and pressure. The typical IM-5zeolite membrane had p-/o-xylene separation factor of 3.7. Our results suggest that IM-5 zeolite is a potentially good membrane material for the separation of xylene mixtures. 展开更多
关键词 Membranes Zeolites SEPARATION XYLENE Secondary growth
下载PDF
Silicalite-1 zeolite encapsulated Fe nanocatalyst for Fenton-like degradation of methylene blue
10
作者 Hongwei Guo Linyuan Chen +2 位作者 Xueying Zhang Huanhao Chen Yan Shao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期251-259,共9页
Encapsulation of Fe nanoparticles in zeolite is a promising way to significantly improve the catalytic activity and stability of Fe-based catalysts during the degradation process of organic pollutants.Herein,Fe nanoca... Encapsulation of Fe nanoparticles in zeolite is a promising way to significantly improve the catalytic activity and stability of Fe-based catalysts during the degradation process of organic pollutants.Herein,Fe nanocatalysts were encapsulated into silicalite-1(S-1)zeolite by using a ligand-protected method(with dicyandiamide(DCD)as a organic ligand)under direct hydrothermal synthesis condition.High-resolution transmission electron microscopy(HRTEM)results confirmed the high dispersion of Fe nanocatalysts which were successfully encapsulated within the voids among the primary particles of the S-1 zeolite.The developed S-1 zeolite encapsulated Fe nanocatalyst(Fe@S-1)exhibited significantly improved catalytic activity and reusability in the catalytic degradation process of methylene blue(MB).Specifically,the developed Fe0.021@S-1 catalyst showed high catalytic degradation activity,giving a high MB degradation efficiency of 100%in 30 min,outperformed the conventional impregnated catalyst(Fe/S-1).Moreover,the Fe@S-1 catalyst afforded an outstanding stability,showing only ca.7.9%activity loss after five cycling tests,while the Fe/S-1 catalyst presented a significantly activity loss of 50.9%after only three cycles.Notably,the encapsulation strategy enabled a relatively lower Fe loading in the Fe@S-1 catalyst in comparison with that of the Fe/S-1 catalyst,i.e.,0.35%vs.0.81%(mass).Radical scavenging experiments along with electron spin resonance(ESR)measurements confirmed that the major role ofOH in the MB degradation process.Specifically,Fe@S-1 catalyst with high molar ratio of[Fe(DCD)]Cl3 is beneficial to form Fe complexes/nanoclusters in the voids(which has large pore size of 1–2 nm)among the primary particles of the zeolite,and thus improving the diffusion and accessibility of reactants to Fe active sites,and thus exhibiting a relatively higher degradation efficiency.This work demonstrates that zeolite-encapsulated Fe nanocatalysts present potential applications in the advanced oxidation of wastewater treatment. 展开更多
关键词 ZEOLITE ENCAPSULATION Fe nanocatalyst Degradation Methylene blue
下载PDF
Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO_(2)
11
作者 Mingdong Sun Dongxin Pan +3 位作者 Tingting Ye Jing Gu Yu Zhou Jun Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期212-221,共10页
Electrochemical CO_(2) reduction reaction(CO_(2) RR) has attracted growing attention in energy storage and sustainable production of fuels and chemicals. N-doped carbon materials are preferred metal-free electrocataly... Electrochemical CO_(2) reduction reaction(CO_(2) RR) has attracted growing attention in energy storage and sustainable production of fuels and chemicals. N-doped carbon materials are preferred metal-free electrocatalysts, but it remains one challenge to finely engineer the active sites and porosity. Herein, we demonstrated that ionic porous polyamides were a kind of versatile precursors to prepare functional carbon materials in a one-step pyrolysis process. The polyamide precursors allowed the maintenance of abundant N species at high temperatures. The existence of ionic moieties and large specific surface area of the precursors promoted the formation of larger porosity carbon with a large specific surface area and sufficient active graphitic-N species by controlling the pyrolysis temperature. The catalyst was highly selective in the CO_(2) RR to produce CO with a maximum Faraday efficiency above 99%, attributable to the improved mass transfer in a large porosity system. This work shows that ionic polyamides are promising carbon precursors for the fabrication of metal-free electrocatalysts for CO_(2) RR. 展开更多
关键词 Carbon dioxide ELECTROCHEMISTRY Reduction Ionic mesoporous polyamide N-doped carbon material
下载PDF
Effects of the original state of sodium-based additives on microstructure,surface characteristics and filtration performance of SiC membranes
12
作者 Yuling Xie Qilin Gu +2 位作者 Qian Jiang Zhaoxiang Zhong Weihong Xing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期1-11,共11页
Sodium-contained compounds are promising sintering additives for the low-temperature preparation of reaction bonded SiC membranes.Although sodium-based sintering additives in various original states were attempted,the... Sodium-contained compounds are promising sintering additives for the low-temperature preparation of reaction bonded SiC membranes.Although sodium-based sintering additives in various original states were attempted,their effects on microstructure and surface properties have rarely been studied.In this work,three types of sodium-based additives,including solid-state NaA zeolite residue(NaA)and liquidstate dodecylbenzene sulfonate(SDBS)and water glass(WG),were separately adopted to prepare SiC membranes,and the microstructure,surface characteristics and filtration performance of these SiC membranes were comparatively studied.Results showed that the SiC membranes prepared with liquid-state SDBS and WG(S-SDBS and S-WG)showed lower open porosity yet higher bending strength compared to those prepared with solid-state NaA(S-NaA).The observed differences in bending strength were further interpreted by analyzing the reaction process of each sintering additive and the composition of the bonding phase in the reaction bonded SiC membranes.Meanwhile,the microstructural differentiation was correlated to the original state of the additives.In addition,their surface characteristics and filtration performance for oil-in-water emulsion were examined and correlated to the membrane microstructure.The S-NaA samples showed higher hydrophilicity,lower surface roughness(1.80μm)and higher rejection ratio(99.99%)in O/W emulsion separation than those of S-WG and S-SDBS.This can be attributed to the smaller mean pore size and higher open porosity,resulting from the originally solid-state NaA additives.Therefore,this work revealed the comprehensive effects of original state of sintering additives on the prepared SiC membranes,which could be helpful for the application-oriented fabrication by choosing additives in suitable state. 展开更多
关键词 SiC membrane Sintering additive Reaction sintering MICROSTRUCTURE Oil-in-water emulsions
下载PDF
Influence of water vapor on the separation of volatile organic compound/nitrogen mixture by polydimethylsiloxane membrane
13
作者 Yifan Liang Haibo Lei +2 位作者 Xinlei He Haoli Zhou Wanqin Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期26-36,共11页
In the industrial treatment of waste volatile organic compound(VOC)streams by membrane technology,a third impurity,generally,water vapor,coexists in the mixture of VOC and nitrogen or air,and can affect membrane perfo... In the industrial treatment of waste volatile organic compound(VOC)streams by membrane technology,a third impurity,generally,water vapor,coexists in the mixture of VOC and nitrogen or air,and can affect membrane performance and the design of the industrial process.This study focused on the investigation of the effect of water vapor on the separation performance of the separation of VOC/water/nitrogen mixtures by a polydimethylsiloxane(PDMS)membrane.Three types of VOCs:water-miscible ethanol,water-semi-miscible butanol,and water-immiscible cyclohexane,were selected for the study.Different operating parameters including,concentration of the feed VOC,feed temperature,and concentration of the feed water were compared for the separation of binary and ternary VOC/nitrogen mixtures.The interaction between the VOC and water was analyzed to explain the transportation mechanism after analyzing the difference in the membrane performance for the separation of binary and ternary mixtures.The results indicated that the interaction between the VOC(or nitrogen)and water is the key factor affecting membrane performance.Water can promote the permeation of hydrophilic VOC but prevent hydrophobic VOC through the membrane for the separation of ternary VOC/water/nitrogen mixtures.These results will provide fundamental insights for the design of the recovery application process for industrial membrane-based VOCs,and also guidance for the investigation of the separation mechanism in vapor permeation. 展开更多
关键词 Water vapor Ternary mixtures POLYDIMETHYLSILOXANE Membranes PERMEABILITY SELECTIVITY
下载PDF
Methanation of CO/CO_(2)for power to methane process:Fundamentals,status,and perspectives
14
作者 Jie Ren Hao Lou +3 位作者 Nuo Xu Feng Zeng Gang Pei Zhandong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期182-206,I0005,共26页
Power-to-methane(P2M)processes,by converting electricity from renewable energy to H2and then into other high value-added and energy-intense chemicals in the presence of active catalysts,have become an effective soluti... Power-to-methane(P2M)processes,by converting electricity from renewable energy to H2and then into other high value-added and energy-intense chemicals in the presence of active catalysts,have become an effective solution for energy storage.However,the fluctuating electricity from intermittent renewable energy leads to a dynamic composition of reactants for downstream methanation,which requires an excellent heterogeneous catalyst to withstand the harsh conditions.Based on these findings,the objective of this review is to classify the fundamentals and status of CO/CO_(2)methanation and identify the pathways in the presence of various catalysts for methane production.In addition,this review sheds insight into the future development and challenges of CO_(2)or CO methanation,including the deactivation mechanisms and catalyst performance under dynamically harsh conditions.Finally,we elaborated on the advantages and development prospects of P2M,and then we summarized the current stage and ongoing industrialization projects of P2M. 展开更多
关键词 Power-to-methane CO methanation CO_(2)methanation Heterogeneous catalyst Methanation mechanism
下载PDF
Prediction of atomization characteristics of pressure swirl nozzle with different structures
15
作者 Jinfan Liu Xin Feng +4 位作者 Hu Liang Weipeng Zhang Yuanyuan Hui Haohan Xu Chao Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期171-184,共14页
The structure of the pressure swirl nozzle is an important factor affecting its spray performance.This work aims to study pressure swirl nozzles with different structures by experiment and simulation.In the experiment... The structure of the pressure swirl nozzle is an important factor affecting its spray performance.This work aims to study pressure swirl nozzles with different structures by experiment and simulation.In the experiment,10 nozzles with different structures are designed to comprehensively cover various geometric factors.In terms of simulation,steady-state simulation with less computational complexity is used to study the flow inside the nozzle.The results show that the diameter of the inlet and outlet,the direction of the inlet,the diameter of the swirl chamber,and the height of the swirl chamber all affect the atomization performance,and the diameter of the inlet and outlet has a greater impact.It is found that under the same flow rate and pressure,the geometric differences do have a significant impact on the atomization characteristics,such as spray angle and SMD(Sauter mean diameter).Specific nozzle structures can be customized according to the actual needs.Data analysis shows that the spray angle is related to the swirl number,and the SMD is related to turbulent kinetic energy.Through data fitting,the equations for predicting the spray angle and the SMD are obtained.The error range of the fitting equation for the prediction of spray angle and SMD is within 15% and 10% respectively.The prediction is expected to be used in engineering to estimate the spray performance at the beginning of a real project. 展开更多
关键词 Pressure swirl nozzle Nozzle structure Numerical simulation Spray angle PREDICTION
下载PDF
Promotional effects of Ru and Fe on Ni/ZrO_(2) catalyst during CO_(2) methanation:A comparative evaluation of the mechanism
16
作者 Jie Ren Feng Zeng +2 位作者 Chalachew Mebrahtu Zhandong Wang Regina Palkovits 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期351-361,I0008,共12页
Ni-based catalysts are widely investigated non-noble metal-based systems for CO_(2)methanation.However,their industrial application is still limited due to lower activity at low-temperature and catalyst deactivation.I... Ni-based catalysts are widely investigated non-noble metal-based systems for CO_(2)methanation.However,their industrial application is still limited due to lower activity at low-temperature and catalyst deactivation.Incorporating a second metal such as Ru and Fe is considered as a successful strategy to overcome these challenges through alloy formation or the synergies provided by the interplay of two adjacent metallic sites.Nonetheless,their promotional effect on the CO_(2)methanation mechanism under similar conditions has not been reported yet.In this work,Fe and Ru-promoted Ni/ZrO_(2)catalysts were investigated to evaluate their promotional effect on the mechanism.The Ni/Fe ratio was first optimized and a CO_(2)conversion rate of 37.7 mmolCO_(2)/(molNi+Fes)and 96.3%CH^(4)selectivity was obtained over the Ni_(0.8)Fe_(0.2)/ZrO_(2)catalyst.In comparison with Ni_(0.8)Fe_(0.2)/ZrO_(2),Ni_(0.8)Ru_(0.2)/ZrO_(2)prepared with the same composition showed higher activity and stability in CO_(2)methanation.Characterization results indicate alloys formation and H spillover for Ni_(0.8)Ru_(0.2)/ZrO_(2)to be responsible for promotion.Besides,in situ DRIFTS studies evidenced the occurrence of both CO_(2)dissociative and associative pathways over Ni_(0.8)Ru_(0.2)/ZrO_(2)catalyst,while solely the CO_(2)associative pathway occurred for Ni_(0.8)Fe_(0.2)/ZrO_(2) 展开更多
关键词 Ni-based catalyst Alloy formation H spillover CO_(2) methanation Methanation mechanism
下载PDF
An Anti-Physical Attack Scheme of ARX Lightweight Algorithms for IoT Applications
17
作者 Qiang Zhi Xiang Jiang +3 位作者 Hangying Zhang Zhengshu Zhou Jianguo Ren Tong Huang 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期389-402,共14页
The lightweight encryption algorithm based on Add-Rotation-XOR(ARX)operation has attracted much attention due to its high software affinity and fast operation speed.However,lacking an effective defense scheme for phys... The lightweight encryption algorithm based on Add-Rotation-XOR(ARX)operation has attracted much attention due to its high software affinity and fast operation speed.However,lacking an effective defense scheme for physical attacks limits the applications of the ARX algorithm.The critical challenge is how to weaken the direct dependence between the physical information and the secret key of the algorithm at a low cost.This study attempts to explore how to improve its physical security in practical application scenarios by analyzing the masking countermeasures of ARX algorithms and the leakage causes.Firstly,we specify a hierarchical security framework by quantitatively evaluating the indicators based on side-channel attacks.Then,optimize the masking algorithm to achieve a trade-off balance by leveraging the software-based local masking strategies and non-full-round masking strategies.Finally,refactor the assembly instruction to improve the leaks by exploring the leakage cause at assembly instruction.To illustrate the feasibility of the proposed scheme,we further conducted a case study by designing a software-based masking method for Chaskey.The experimental results show that the proposed method can effectively weaken the impact of physical attacks. 展开更多
关键词 IoT security lightweight encryption anti-physical attack ARX algorithms
下载PDF
Enhanced H_(2) permeation and CO_(2) tolerance of self-assembled ceramic-metal-ceramic BZCYYb-Ni-CeO_(2) hybrid membrane for hydrogen separation
18
作者 Jianqiu Zhu Jingzeng Cui +11 位作者 Yuxuan Zhang Ze Liu Chuan Zhou Susu Bi Jingyuan Ma Jing Zhou Zhiwei Hu Tao Liu Zhi Li Xiangyong Zhao Jian-Qiang Wang Linjuan Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期47-55,I0002,共10页
Perovskite-type mixed protonic-electronic conducting membranes have attracted attention because of their ability to separate and purify hydrogen from a mixture of gases generated by industrial-scale steam reforming ba... Perovskite-type mixed protonic-electronic conducting membranes have attracted attention because of their ability to separate and purify hydrogen from a mixture of gases generated by industrial-scale steam reforming based on an ion diffusion mechanism.Exploring cost-effective membrane materials that can achieve both high H_(2) permeability and strong CO_(2)-tolerant chemical stability has been a major challenge for industrial applications.Herein,we constructed a triple phase(ceramic-metal-ceramic)membrane composed of a perovskite ceramic phase BaZr_(0.1)Ce_(0.7)Y_(0.1)Yb_(0.1)O_(3-δ)(BZCYYb),Ni metal phase and a fluorite ceramic phase CeO_(2).Under H_(2) atmosphere,Ni metal in-situ exsolved from the oxide grains,and decorated the grain surface and boundary,thus the electronic conductivity and hydrogen separation performance can be promoted.The BZCYYbNi-CeO_(2)hybrid membrane achieved an exceptional hydrogen separation performance of 0.53 mL min^(-1)cm^(-2) at 800℃ under a 10 vol% H_(2) atmosphere,surpassing all other perovskite membranes reported to date.Furthermore,the CeO_(2) phase incorporated into the BZCYYb-Ni effectively improved the CO_(2)-tolerant chemical stability.The BZCYYbNi-CeO_(2) membrane exhibited outstanding long-term stability for at least 80 h at 700℃ under 10 vol%CO_(2)-10 vol%H_(2).The success of hybrid membrane construction creates a new direction for simultaneously improving their hydrogen separation performance and CO_(2) resistance stability. 展开更多
关键词 Hydrogen separation Triple phase hybrid membrane Mixed proton-electron conductor Chemical stability X-ray absorption spectra
下载PDF
In operando-formed interface between silver and perovskite oxide for efficient electroreduction of carbon dioxide to carbon monoxide
19
作者 Xinhao Wu Yanan Guo +11 位作者 Yuxing Gu Fenghua Xie Mengran Li Zhiwei Hu Hong-Ji Lin Chih-Wen Pao Yu-Cheng Huang Chung-Li Dong Vanessa KPeterson Ran Ran Wei Zhou Zongping Shao 《Carbon Energy》 SCIE CSCD 2023年第4期81-93,共13页
Electrochemical carbon dioxide(CO_(2))reduction(ECR)is a promising technology to produce valuable fuels and feedstocks from CO_(2).Despite large efforts to develop ECR catalysts,the investigation of the catalytic perf... Electrochemical carbon dioxide(CO_(2))reduction(ECR)is a promising technology to produce valuable fuels and feedstocks from CO_(2).Despite large efforts to develop ECR catalysts,the investigation of the catalytic performance and electrochemical behavior of complex metal oxides,especially perovskite oxides,is rarely reported.Here,the inorganic perovskite oxide Ag-doped(La_(0.8)Sr_(0.2))_(0.95)Ag_(0.05)MnO_(3-δ)(LSA0.05M)is reported as an efficient electrocatalyst for ECR to CO for the first time,which exhibits a Faradaic efficiency(FE)of 84.3%,a remarkable mass activity of 75Ag^(-1)(normalized to the mass of Ag),and stability of 130 h at a moderate overpotential of 0.79 V.The LSA0.05M catalyst experiences structure reconstruction during ECR,creating the in operando-formed interface between the perovskite and the evolved Ag phase.The evolved Ag is uniformly distributed with a small particle size on the perovskite surface.Theoretical calculations indicate the reconstruction of LSA0.05M during ECR and reveal that the perovskite-Ag interface provides adsorption sites for CO_(2) and accelerates the desorption of the*CO intermediate to enhance ECR.This study presents a novel high-performance perovskite catalyst for ECR andmay inspire the future design of electrocatalysts via the in operando formation of metal-metal oxide interfaces. 展开更多
关键词 electrochemical CO_(2)reduction faradaic efficiencies interfaces perovskite oxides
下载PDF
Tungsten oxide/nitrogen-doped carbon nanotubes composite catalysts for enhanced redox kinetics in lithium-sulfur batteries
20
作者 Deqing He Zihao Xie +2 位作者 Qian Yang Wei Wang Chao Su 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期58-67,共10页
The sluggish redox kinetics of polysulfides in lithium-sulfur(Li-S)batteries are a significant obstacle to their widespread adoption as energy storage devices.However,recent studies have shown that tungsten oxide(WO_(... The sluggish redox kinetics of polysulfides in lithium-sulfur(Li-S)batteries are a significant obstacle to their widespread adoption as energy storage devices.However,recent studies have shown that tungsten oxide(WO_(3))can facilitate the conversion kinetics of polysulfides in Li-S batteries.Herein,we fabricated host materials for sulfur using nitrogen-doped carbon nanotubes(N-CNTs)and WO_(3).We used low-cost components and simple procedures to overcome the poor electrical conductivity that is a disadvantage of metal oxides.The composites of WO_(3) and N-CNTs(WO_(3)/N-CNTs)create a stable framework structure,fast ion diffusion channels,and a 3D electron transport network during electrochemical reaction processes.As a result,the WO_(3)/N-CNT-Li2S6 cathode demonstrates high initial capacity(1162 mA·h·g^(-1) at 0.5℃),excellent rate performance(618 mA·h·g^(-1) at 5.5℃),and a low capacity decay rate(0.093%up to 600 cycles at 2℃).This work presents a novel approach for preparing tungsten oxide/carbon composite catalysts that facilitate the redox kinetics of polysulfide conversion. 展开更多
关键词 Li-S batteries Composites Ion diffusion channels 3D electron transport network Redox kinetics
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部