期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
Towards High-Energy and Anti-Self-Discharge Zn-Ion Hybrid Supercapacitors with New Understanding of the Electrochemistry 被引量:7
1
作者 Yang Li Wang Yang +6 位作者 Wu Yang Ziqi Wang Jianhua Rong Guoxiu Wang Chengjun Xu Feiyu Kang Liubing Dong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第6期268-283,共16页
Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and ant... Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and anti-self-discharge ZHSs are realized based on the fibrous carbon cathodes with hierarchically porous surface and O/N heteroatom functional groups.Hierarchically porous surface of the fabricated free-standing fibrous carbon cathodes not only provides abundant active sites for divalent ion storage,but also optimizes ion transport kinetics.Consequently,the cathodes show a high gravimetric capacity of 156 mAh g^(−1),superior rate capability(79 mAh g^(−1)with a very short charge/discharge time of 14 s)and exceptional cycling stability.Meanwhile,hierarchical pore structure and suitable surface functional groups of the cathodes endow ZHSs with a high energy density of 127 Wh kg−1,a high power density of 15.3 kW kg^(−1)and good anti-self-discharge performance.Mechanism investigation reveals that ZHS electrochemistry involves cation adsorption/desorption and Zn_(4)SO_(4)(OH)_(6)·5H_(2)O formation/dissolution at low voltage and anion adsorption/desorption at high voltage on carbon cathodes.The roles of these reactions in energy storage of ZHSs are elucidated.This work not only paves a way for high-performance cathode materials of ZHSs,but also provides a deeper understanding of ZHS electrochemistry. 展开更多
关键词 Zn-ion hybrid supercapacitor Carbon material Fibrous cathode Hierarchical pore structure HIGH-ENERGY
下载PDF
Advanced Anode Materials of Potassium Ion Batteries:from Zero Dimension to Three Dimensions 被引量:7
2
作者 Jiefeng Zheng Yuanji Wu +3 位作者 Yingjuan Sun Jianhua Rong Hongyan Li Li Niu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第1期208-244,共37页
Potassium ion batteries(PIBs)with the prominent advantages of sufficient reserves and economical cost are attractive candidates of new rechargeable batteries for large-grid electrochemical energy storage systems(EESs)... Potassium ion batteries(PIBs)with the prominent advantages of sufficient reserves and economical cost are attractive candidates of new rechargeable batteries for large-grid electrochemical energy storage systems(EESs).However,there are still some obstacles like large size of K+to commercial PIBs applications.Therefore,rational structural design based on appropriate materials is essential to obtain practical PIBs anode with K+accommodated and fast diffused.Nanostructural design has been considered as one of the effective strategies to solve these issues owing to unique physicochemical properties.Accordingly,quite a few recent anode materials with different dimensions in PIBs have been reported,mainly involving in carbon materials,metal-based chalcogenides(MCs),metal-based oxides(MOs),and alloying materials.Among these anodes,nanostructural carbon materials with shorter ionic transfer path are beneficial for decreasing the resistances of transportation.Besides,MCs,MOs,and alloying materials with nanostructures can effectively alleviate their stress changes.Herein,these materials are classified into 0D,1D,2D,and 3D.Particularly,the relationship between different dimensional structures and the corresponding electrochemical performances has been outlined.Meanwhile,some strategies are proposed to deal with the current disadvantages.Hope that the readers are enlightened from this review to carry out further experiments better. 展开更多
关键词 Potassium ion batteries ANODE Structure design NANOMATERIALS Dimensions
下载PDF
Simultaneously Regulating Uniform Zn^(2+) Flux and Electron Conduction by MOF/rGO Interlayers for High‑Performance Zn Anodes 被引量:7
3
作者 Ziqi Wang Liubing Dong +5 位作者 Weiyuan Huang Hao Jia Qinghe Zhao Yidi Wang Bin Fei Feng Pan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第5期34-44,共11页
Owing to the merits of low cost,high safety and environmental benignity,rechargeable aqueous Zn-based batteries(ZBs)have gained tremendous attention in recent years.Nevertheless,the poor reversibility of Zn anodes tha... Owing to the merits of low cost,high safety and environmental benignity,rechargeable aqueous Zn-based batteries(ZBs)have gained tremendous attention in recent years.Nevertheless,the poor reversibility of Zn anodes that originates from dendrite growth,surface passivation and corrosion,severely hinders the further development of ZBs.To tackle these issues,here we report a Janus separator based on a Zn-ion conductive metal-organic framework(MOF)and reduced graphene oxide(rGO),which is able to regulate uniform Zn2+flux and electron conduction simultaneously during battery operation.Facilitated by the MOF/rGO bifunctional interlayers,the Zn anodes demonstrate stable plating/stripping behavior(over 500 h at 1 mA cm^(−2)),high Coulombic efficiency(99.2%at 2 mA cm^(−2) after 100 cycles)and reduced redox barrier.Moreover,it is also found that the Zn corrosion can be effectively retarded through diminishing the potential discrepancy on Zn surface.Such a separator engineering also saliently promotes the overall performance of Zn|MnO2 full cells,which deliver nearly 100%capacity retention after 2000 cycles at 4 A g^(−1) and high power density over 10 kW kg^(−1).This work provides a feasible route to the high-performance Zn anodes for ZBs. 展开更多
关键词 Zn-based battery Zn anode Janus separator Metal-organic framework Reduced graphene oxide
下载PDF
High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials 被引量:9
4
作者 Xuechao Pu Baozheng Jiang +4 位作者 Xianli Wang Wenbao Liu Liubing Dong Feiyu Kang Chengjun Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期126-140,共15页
Rechargeable aqueous zinc-ion batteries(ZIB s) have been gaining increasing interest for large-scale energy storage applications due to their high safety,good rate capability,and low cost.However,the further developme... Rechargeable aqueous zinc-ion batteries(ZIB s) have been gaining increasing interest for large-scale energy storage applications due to their high safety,good rate capability,and low cost.However,the further development of ZIB s is impeded by two main challenges:Currently reported cathode materials usually suffer from rapid capacity fading or high toxicity,and meanwhile,unstable zinc stripping/plating on Zn anode seriously shortens the cycling life of ZIBs.In this paper,metal-organic framework(MOF) materials are proposed to simultaneously address these issues and realize high-performance ZIB s with Mn(BTC) MOF cathodes and ZIF-8-coated Zn(ZIF-8@Zn) anodes.Various MOF materials were synthesized,and Mn(BTC) MOF was found to exhibit the best Zn^2+-storage ability with a capacity of 112 mAh g^-1.Zn^2+ storage mechanism of the Mn(BTC) was carefully studied.Besides,ZIF-8@Zn anodes were prepared by coating ZIF-8 MOF material on Zn foils.Unique porous structure of the ZIF-8 coating guided uniform Zn stripping/plating on the surface of Zn anodes.As a result,the ZIF-8@Zn anodes exhibited stable Zn stripping/plating behaviors,with 8 times longer cycle life than bare Zn foils.Based on the above,high-performance aqueous ZIBs were constructed using the Mn(BTC) cathodes and the ZIF-8@Zn anodes,which displayed an excellent long-cycling stability without obvious capacity fading after 900 charge/discharge cycles.This work provides a new opportunity for high-performance energy storage system. 展开更多
关键词 Zinc-ion battery Metal-organic framework Cathode material Zn anode
下载PDF
Enhancing the activity,selectivity,and recyclability of Rh/PPh_(3) system‐catalyzed hydroformylation reactions through the development of a PPh_(3)‐derived quasi‐porous organic cage as a ligand 被引量:3
5
作者 Wenlong Wang Cunyao Li +7 位作者 Heng Zhang Jiangwei Zhang Lanlu Lu Zheng Jiang Lifeng Cui Hongguang Liu Li Yan Yunjie Ding 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第7期1216-1226,共11页
In contrast to heterogeneous network frameworks(e.g.,covalent organic frameworks and metal‐organic frameworks)and porous organic polymers,porous organic cages(POCs)are soluble molecules in common organic solvents tha... In contrast to heterogeneous network frameworks(e.g.,covalent organic frameworks and metal‐organic frameworks)and porous organic polymers,porous organic cages(POCs)are soluble molecules in common organic solvents that provide significant potential for homogeneous catalysis.Herein,we report a triphenylphosphine‐derived quasi‐porous organic cage(denoted as POC‐DICP)as an efficient organic molecular cage ligand for Rh/PPh_(3) system‐catalyzed homogeneous hydroformylation reactions.POC‐DICP not only displays enhanced hydroformylation selectivity(aldehyde selectivity as high as 97%and a linear‐to‐branch ratio as high as 1.89)but can also be recovered and reused via a simple precipitation method in homogeneous reaction systems.We speculate that the reason for the high activity and good selectivity is the favorable geometry(cone angle=123.88°)and electronic effect(P site is relatively electron‐deficient)of POC‐DICP,which were also demonstrated by density functional theory calculations and X‐ray absorption fine‐structure characterization. 展开更多
关键词 HYDROFORMYLATION TRIPHENYLPHOSPHINE Porous organic cages Chemical selectivity Linear‐regioselectivity
下载PDF
High Capacity and Fast Kinetics of Potassium‑Ion Batteries Boosted by Nitrogen‑Doped Mesoporous Carbon Spheres 被引量:2
6
作者 Jiefeng Zheng Yuanji Wu +4 位作者 Yong Tong Xi Liu Yingjuan Sun Hongyan Li Li Niu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期215-229,共15页
In view of rich potassium resources and their working potential,potassium-ion batteries(PIBs)are deemed as next generation rechargeable batteries.Owing to carbon materials with the preponderance of durability and econ... In view of rich potassium resources and their working potential,potassium-ion batteries(PIBs)are deemed as next generation rechargeable batteries.Owing to carbon materials with the preponderance of durability and economic price,they are widely employed in PIBs anode materials.Currently,porosity design and heteroatom doping as efficacious improvement strategies have been applied to the structural design of carbon materials to improve their electrochemical performances.Herein,nitrogen-doped mesoporous carbon spheres(MCS)are synthesized by a facile hard template method.The MCS demonstrate larger interlayer spacing in a short range,high specific surface area,abundant mesoporous structures and active sites,enhancing K-ion migration and diffusion.Furthermore,we screen out the pyrolysis temperature of 900°C and the pore diameter of 7 nm as optimized conditions for MCS to improve performances.In detail,the optimized MCS-7-900 electrode achieves high rate capacity(107.9 mAh g^(−1) at 5000 mA g^(−1))and stably brings about 3600 cycles at 1000 mA g^(−1).According to electrochemical kinetic analysis,the capacitive-controlled effects play dominant roles in total storage mechanism.Additionally,the full-cell equipped MCS-7-900 as anode is successfully constructed to evaluate the practicality of MCS. 展开更多
关键词 Potassium-ion batteries Nitrogen doping Mesoporous carbon anode KINETICS
下载PDF
Coordination and interface engineering to boost catalytic property of two-dimensional ZIFs for wearable Zn-air batteries 被引量:2
7
作者 Hang Lei Shangjing Yang +5 位作者 Qixiang Wan Liang Ma Muhammad Sufyan Javed Shaozao Tan Zilong Wang Wenjie Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期78-86,共9页
Metal organic frameworks(MOFs) have been considered as compelling precursor for miscellaneous applications. However, their unsatisfied electrocatalytic performance limits their direct application as electrocatalyst. H... Metal organic frameworks(MOFs) have been considered as compelling precursor for miscellaneous applications. However, their unsatisfied electrocatalytic performance limits their direct application as electrocatalyst. Herein, by incorporating the cobalt-oxide bonds and polyaniline(PANI) with two-dimension zeolitic imidazolate frameworks(ZIFs), a novel bifunctional catalyst(Co-O-ZIF/PANI) for Zn-air battery was designed based on a facile and eco-friendly method. This Co-O-ZIF/PANI with optimized surface adsorption effect and suitable Co^(3+)/Co^(2+)ratio, exhibits eminent electrocatalytic activity toward both oxygen reduction and evolution reaction. The as-assembled liquid ZABs based on Co-O-ZIF/PANI achieves a remarkable maximum power density of 123.1 m W cm^(-2) and low discharge-charge voltage gap of 0.81 V at 5 m A cm^(-2) for over 300 cycles. Operando Raman spectroscopy reveals that the excellent performance origins from the optimized surface chemisorption property of O_(2) and H_(2)O brought by Co–O bonds and PANI. This work provides a novel prospect to develop efficient MOF derived bifunctional electrocatalysts by optimizing surface chemisorption properties. 展开更多
关键词 Zn-air batteries Wearable batteries Bifunctional electrocatalyst Operando Raman Zeolitic imidazolate frameworks
下载PDF
Transformations of biomass-based levulinate ester into γ-valerolactone and pyrrolidones using carbon nanotubes-grafted N-heterocyclic carbene ruthenium complexes 被引量:1
8
作者 Qiujuan Shen Yi Zhang +2 位作者 Yiping Zhang Shaozao Tan Jinzhu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期29-38,共10页
As a renewable biomass-based compound with wide applications in food additives,fine chemical synthesis and fuels,γ-valerolactone(GVL)has attached much attention.While,pyrrolidones are widely used in pharmaceutical,ag... As a renewable biomass-based compound with wide applications in food additives,fine chemical synthesis and fuels,γ-valerolactone(GVL)has attached much attention.While,pyrrolidones are widely used in pharmaceutical,agrochemical,material industrial and other chemical production.In this research,we demonstrated transformations of biomass-based ethyl levulinate(EL)into GVL and pyrrolidones by using heterogeneous catalysts(CNT-Ru-1)with N-heterocyclic carbene ruthenium(NHC-Ru)complex grafted on multi-walled carbon nanotube(CNT).The Ru catalyst showed high efficiency on EL hydrogenation to GVL with both EL conversion and GVL yield exceeding 99%.Moreover,the Ru catalyst readily promoted reductive amination of EL in the presence of various amines for pyrrolidone synthesis.Finally,the Ru catalyst was also applicable to hydrogenation of various carbonyl compounds for the synthesis of the corresponding alcohols with excellent catalytic performance.The research provides insight for heterogenizing the homogeneous noble metal-based catalysts with high catalytic active for biomass-based transformations. 展开更多
关键词 Biomass Carbene complex HYDROGENATION RUTHENIUM Sustainable chemistry γ-Valerolactone
下载PDF
Self-reinforced Calcium Phosphate Cement Inspired by Sea Cucumber Dermis
9
作者 吴治文 WANG Zihao +2 位作者 CAI Zepeng QU Liting 于涛 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期682-688,共7页
A composite bone cement based onα-TCP with self-reinforcing characteristics is prepared by compounding cellulose whiskers and polyvinyl alcohol in different proportions.In this system,we are inspired by the sea cucum... A composite bone cement based onα-TCP with self-reinforcing characteristics is prepared by compounding cellulose whiskers and polyvinyl alcohol in different proportions.In this system,we are inspired by the sea cucumber,which can alter the stiffness of their inner dermis reversibly.Through the formation of hydrogen bonds between the hydroxyl groups on the cellulose whiskers and PVA,the bone cement matrix can be strengthened during the curing process of cement.In the process of bone cement blending,there is more water,the hydrogen bond connection is destroyed,so the slurry has better fluidity at this time.As the hydration of the bone cement progresses,the reduction of the water phase leads to the formation of a permeable network structure of hydrogen bond connections between the whiskers.The dual-phase action of PVA and whiskers greatly increases the mechanical strength of the bone cement system(5.5 to 23.8 MPa),while the presence of polyvinyl alcohol improves the toughness of the bone cement system.This work was supposed to explore whether the chemoresponsive materials can be adapted to biomedical materials,for example,bone repair. 展开更多
关键词 bone repair self-reinforce chemoresponsive hydrogen bond
下载PDF
Applications of lignin-derived catalysts for green synthesis 被引量:5
10
作者 Yuting Zhu Zhijing Li Jinzhu Chen 《Green Energy & Environment》 SCIE CSCD 2019年第3期210-244,共35页
This review intends to introduce the application of lignin-derived catalyst for green organic synthesis over latest two decades and aims to present a renewable alternative for conventional catalyst for future industry... This review intends to introduce the application of lignin-derived catalyst for green organic synthesis over latest two decades and aims to present a renewable alternative for conventional catalyst for future industry application. The structure of lignin is initially introduced in this review. Then, various pretreatment and activation technologies of lignin are systematically presented, which includes physical activation for the formation of well-developed porosity and chemical activation to introduce catalytic active sites. Finally, the catalytic performances of various lignin-derived catalysts are rationally assessed and compared with conventional catalysts, which involves lignin-derived solid acids for hydrolysis, hydration, dehydration(trans)esterification, multi-component reaction and condensation, lignin-derived solid base for Knoevenagel reaction, lignin-derived electro-catalysts for electro-oxidation, oxygen reduction reaction, and lignin-derived supported transition metal catalysts for hydrogenation, oxidation, coupling reaction, tandem reaction, condensation reaction, ring-opening reaction, Friedel-Crafts-type reaction,Fischer–Tropsch synthesis, click reaction, Glaser reaction, cycloaddition and(trans)esterification. The above lignin-derived catalysts thus successfully promote the transformations of organic compounds, carbon dioxide, biomass-based cellulose, saccharide and vegetable oil into valuable chemicals and fuels. At the end of this review, some perspectives are given on the current issues and tendency on the lignin-derived catalysts for green chemistry. 展开更多
关键词 CATALYST Green CHEMISTRY LIGNIN PRETREATMENT Synthesis
下载PDF
High-performance zinc-ion batteries enabled by electrochemically induced transformation of vanadium oxide cathodes 被引量:2
11
作者 Yang Li Wang Yang +5 位作者 Wu Yang Yongfeng Huang Guoxiu Wang Chengjun Xu Feiyu Kang Liubing Dong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期233-240,共8页
Rechargeable aqueous zinc-ion batteries(ZIBs) have become a research hotspot in recent years,due to their huge potential for high-energy,fast-rate,safe and low-cost energy storage.To realize good electrochemical prope... Rechargeable aqueous zinc-ion batteries(ZIBs) have become a research hotspot in recent years,due to their huge potential for high-energy,fast-rate,safe and low-cost energy storage.To realize good electrochemical properties of ZIBs,cathode materials with prominent Zn^(2+) storage capability are highly needed.Herein,we report a promising ZIB cathode material based on electrochemically induced transformation of vanadium oxides.Specifically,K_(2) V_6 O_(16)·1.5 H_(2) O nanofibers were synthesized through a simple stirring method at near room temperature and then used as cathode materials for ZIBs in different electrolytes.The cathode presented superior Zn^(2+) storage capability in Zn(OTf)_(2) aqueous electrolyte,including high capacity of 321 mAh/g,fast charge/discharge ability(96 mAh/g delivered in 35 s), high energy density of 235 Wh/kg and good cycling performance.Mechanism analysis evidenced that in Zn(OTf)_(2) electrolyte,Zn^(2+) intercalation in the first discharge process promoted K_(2) V_6 O_(16)·1.5 H_(2) O nanofibers to transform into Zn_(3+x)V_(2) O_7(OH)_(2)·2 H_(2) O nanoflakes,and the latter served as the Zn^(2+)-storage host in subsequent charge/discharge processes.Benefiting from open-framework crystal structure and sufficiently exposed surface,the Zn_(3+x)V_(2) O_7(OH)_(2)·2_H2 O nanoflakes exhibited high Zn^(2+) diffusion coefficient,smaller charge-transfer resistance and good reversibility of Zn^(2+) intercalation/de-intercalation,thus leading to superior electrochemical performance.While in ZnS04 aqueous electrolyte,the cathode material cannot sufficiently transform into Zn_(3+x)V_(2) O_7(OH)_(2)·2 H_(2) O thereby corresponding to inferior electrochemical behaviors.Underlying mechanism and influencing factors of such a transformation phenomenon was also explored.This work not only reports a high-performance ZIB cathode material based on electrochemically induced transformation of vanadium oxides,but also provides new insights into Zn^(2+)-storage electrochemistry. 展开更多
关键词 Zinc-ion battery Cathode material Vanadium oxide Electrochemically induced transformation
下载PDF
Visible-light-induced hydrogenation of biomass-based aldehydes by graphitic carbon nitride supported metal catalysts 被引量:1
12
作者 Shenghong Dong Mingzhe Chen +2 位作者 Jiarui Zhang Jinzhu Chen Yisheng Xu 《Green Energy & Environment》 SCIE CSCD 2021年第5期715-724,共10页
The plasmonic photocatalyst of Pd supported on graphitic carbon nitride(Pd/g-C3N4)exhibits excellent catalytic activity in photo-induced hydrogenation of biomass-based aldehydes with environmental benign reagents of f... The plasmonic photocatalyst of Pd supported on graphitic carbon nitride(Pd/g-C3N4)exhibits excellent catalytic activity in photo-induced hydrogenation of biomass-based aldehydes with environmental benign reagents of formic acid(HCOOH)as proton source and triethylamine(TEA)as sacrificial electron donator.The chemical and configurational properties of the Pd/g-C3N4 were systematically analyzed with XRD,TEM and XPS.Under optimized conditions,27%yield of furfuryl alcohol with the corresponding turnover frequency(TOF)around 3.72 h^(-1) were obtained from furfural and TEA-HCOOH under visible-light irradiation by using Pd/g-C3N4.Our research additionally reveals that Pd atom is the true catalytic active site for the hydrogenation and the photo-promoted reduction mainly occurs through noble metal nanoparticles(NPs)-induced effect of surface plasmon resonance(SPR).The photo-catalytic system of Pd/g-C3N4 thus demonstrates a green and effective method for the hydrogenation of biomass-based aldehydes with sustainable solar energy as a driven force. 展开更多
关键词 BIOMASS Graphitic carbon nitride Green chemistry HYDROGENATION PHOTOCATALYSIS
下载PDF
Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using palladium catalyst supported on mesoporous graphitic carbon nitride 被引量:2
13
作者 Jiayi Chen Yao Ge +1 位作者 Yuanyuan Guo Jinzhu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期283-289,共7页
Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural(HMF) to 2,5-dihydroxymethyltetrahydrofuran(DHMTHF) with 96% selectivity and a complete HMF conversion is obtained over palladium catalyst supporte... Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural(HMF) to 2,5-dihydroxymethyltetrahydrofuran(DHMTHF) with 96% selectivity and a complete HMF conversion is obtained over palladium catalyst supported on mesoporous graphitic carbon nitride(Pd/mpg-C_3N_4) under pressured hydrogen atmosphere in aqueous media. The excellent catalytic performance of Pd/mpg-C_3N_4 is attributed to hydrogen bonding-related competitive interactions between reactant HMF and “intermediate” 2,5-dihydroxymethylfuran(DHMF) with the support mpg-C_3N_4, which leads to a deep hydrogenation of DHMF to DHMTHF. 展开更多
关键词 Biomass Carbon nitride 5-Hydroxymethylfurfural Hydrogenation
下载PDF
Medical titanium surface-modified coatings with antibacterial and anti-adhesive properties for the prevention of implant-associated infections
14
作者 Dongliang Huo Fengqian Wang +6 位作者 Fengjuan Yang Tongyao Lin Qing Zhong Sui-Ping Deng Jingxian Zhang Shaozao Tan Langhuan Huang 《Journal of Materials Science & Technology》 SCIE EI CAS 2024年第12期208-223,共16页
Implant-associated infections(IAIs)caused by drug-resistant bacteria remain a critical factor in the fail-ure of implant procedures.Therefore,it is urgent to develop an effective anti-infection coating for im-plant su... Implant-associated infections(IAIs)caused by drug-resistant bacteria remain a critical factor in the fail-ure of implant procedures.Therefore,it is urgent to develop an effective anti-infection coating for im-plant surface modification to prevent IAIs.Herein,an antibacterial and anti-adhesive coating(CMP-Ti)constructed on the surface of titanium implants is reported,formed by the nanomaterial CeO_(2)@Mn_(3)O_(4) NRs(CM NRs)with antibacterial activity and the superhydrophilic polymer polyethylene glycol(PEG).The nanocatalyst CM NRs on the surface of CMP-Ti induce ferroptosis-like death of bacteria by catalyzing the production of hydroxyl radical(·OH)and singlet oxygen(^(1)O_(2))and the consumption of glutathione(GSH).The superhydrophilic coating of CMP-Ti can effectively prevent adherence of drug-resistant bac-teria and avoid biofilm formation.By combining the"active offense"antibacterial mechanism with the"passive defense"anti-adhesion mechanism,CMP-Ti can kill bacteria and inhibit biofilm formation.The results of in vivo studies showed that CMP-Ti effectively prevented implant-associated infections caused by Methicillin-resistant Staphylococcus aureus(MRSA),thus promoting tissue repair and osseointegra-tion.Therefore,this multifunctional coating combining"active offense"and"passive defense"provides a promising way to prevent IAIs caused by drug-resistant bacteria and to promote tissue repair in the future. 展开更多
关键词 Medical titanium Antibacterial coatings Drug-resistant bacteria Biofilm inhibition Ferroptosis-like death
原文传递
Nanodrug enhances post-ablation immunotherapy of hepatocellular carcinoma via promoting dendritic cell maturation and antigen presentation 被引量:3
15
作者 Zecong Xiao Tan Li +7 位作者 Xinyao Zheng Liteng Lin Xiaobin Wang Bo Li Jingjun Huang Yong Wang Xintao Shuai Kangshun Zhu 《Bioactive Materials》 SCIE CSCD 2023年第3期57-68,共12页
Thermal ablation(TA)as an effective method treating hepatocellular carcinoma(HCC)in clinics is facing great challenges of high recurrence and metastasis.Although immune-checkpoint blockade(ICB)-based immuno-therapy ha... Thermal ablation(TA)as an effective method treating hepatocellular carcinoma(HCC)in clinics is facing great challenges of high recurrence and metastasis.Although immune-checkpoint blockade(ICB)-based immuno-therapy has shown potential to inhibit recurrence and metastasis,the combination strategy of ICB and thermal ablation has shown little progress in HCC treatments.The tremendous hurdle for combining ICB with thermal ablation lies with the insufficient antigen internalization and immaturity of tumor-infiltrating dendritic cells(TIDCs)which leads to an inferior immune response to distant tumor growth and metastasis.Herein,an antigen-capturing nanoplatform,whose surface was modified with mannose as a targeting ligand,was constructed for co-delivering tumor-associated antigens(TAAs)and m6A demethylases inhibitor(i.e.,fat mass and obesity asso-ciated gene(FTO)inhibitor)into TIDCs.In vivo results demonstrate that the intratumoral injection of nanodrug followed by HCC thermal ablation promotes dendritic cells(DCs)maturation,improves tumor infiltration of effector T cells and generates immune memory,which synergize with ICB treatment to inhibit the distant tumor growth and lung metastasis.Therefore,the antigen-capturing and FTO-inhibiting nanodrug holds potential to boost the ICB-based immunotherapy against HCC after thermal ablation. 展开更多
关键词 Thermal ablation Tumor-infiltrating dendritic cells N6-methyladenosine modification Nanoplatform Tumor immunotherapy
原文传递
Bi/Bi_(3)Se_(4) nanoparticles embedded in hollow porous carbon nanorod:High rate capability material for potassium-ion batteries 被引量:2
16
作者 Zhisong Chen Yuanji Wu +3 位作者 Xi Liu Yiwei Zhang Lichun Yang Hongyan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期462-471,I0011,共11页
Considering their superior theoretical capacity and low voltage plateau,bismuth(Bi)-based materials are being widely explored for application in potassium-ion batteries(PIBs).Unfortunately,pure Bi and Bibased compound... Considering their superior theoretical capacity and low voltage plateau,bismuth(Bi)-based materials are being widely explored for application in potassium-ion batteries(PIBs).Unfortunately,pure Bi and Bibased compounds suffer from severe electrochemical polarization,agglomeration,and dramatic volume fluctuations.To develop an advanced bismuth-based anode material with high reactivity and durability,in this work,the pyrolysis of Bi-based metal-organic frameworks and in-situ selenization techniques have been successfully used to produce a Bi-based composite with high capacity and unique structure,in which Bi/Bi_(3)Se_(4)nanoparticles are encapsulated in carbon nanorods(Bi/Bi_(3)Se_(4)@CNR).Applied as the anode material of PIBs,the Bi/Bi_(3)Se_(4)@CNR displays fast potassium storage capability with 307.5 m A h g^(-1)at 20 A g^(-1)and durable cycle performance of 2000 cycles at 5 A g^(-1).Notably,the Bi/Bi_(3)Se_(4)@CNR also showed long cycle stability over 1600 cycles when working in a full cell system with potassium vanadate as the cathode material,which further demonstrates its promising potential in the field of PIBs.Additionally,the dual potassium storage mechanism of the Bi/Bi_(3)Se_(4)@CNR based on conversion and alloying reaction has also been revealed by in-situ X-ray diffraction. 展开更多
关键词 Bi_(3)Se_(4) Potassium ion battery Hollow porous carbon rod Conversion-alloying mechanism Bi MOF
下载PDF
Biomimetic construction of oriented lamellar Col/nHAP composite scaffolds and mediation of macrophages to promote angiogenesis and bone regeneration
17
作者 Tingting Huang Tao Huang +5 位作者 Pin Luo Di Xiao Yiping Huang Shenyu Yang Rong Zeng Mei Tu 《Frontiers of Materials Science》 SCIE CSCD 2023年第4期127-146,共20页
Pore characteristics have been identified as key design parameters for osteoimmunomodulation.The strategy reported here is to create an appropriate immune microenvironment by regulating pore characteristics of scaffol... Pore characteristics have been identified as key design parameters for osteoimmunomodulation.The strategy reported here is to create an appropriate immune microenvironment by regulating pore characteristics of scaffolds,thereby promoting early angiogenesis and enhancing osteogenesis.A series of collagen/nanohydroxyapatite(Col/nHAP)composite scaffolds with ordered lamellar structures and different layer spacings were prepared by mimicking the ordered lamellar topology of the bone matrix.Our research indicated that the layer spacing and ordered topology of the scaffold exerted an important influence on phenotype transformation of macrophages and the secretion of angiogenic factors.The Col/nHAP-O(135)with large layer spacing not only supported cell attachment and diffusion in vitro,but also promoted early angiogenesis by timely switching from M1 to M2 macrophage phenotype.In vivo data showed that the layer spacing and the ordered structure of the scaffold synergistically regulated the inflammatory response and triggered macrophages to secrete more angiogenesis related cytokines.Col/nHAP-O(135)considerably promoted the neovascularization and new bone formation in the defect site,indicating that Col/nHAPO(135)could significantly enhance the osteogenic activity of stem cells with the involvement of macrophages. 展开更多
关键词 pore characteristic MACROPHAGE VASCULARIZATION bone regeneration
原文传递
Roadmap for rechargeable batteries:present and beyond 被引量:13
18
作者 Sen Xin Xu Zhang +40 位作者 Lin Wang Haijun Yu Xin Chang Yu-Ming Zhao Qinghai Meng Pan Xu Chen-Zi Zhao Jiahang Chen Huichao Lu Xirui Kong Jiulin Wang Kai Chen Gang Huang Xinbo Zhang Yu Su Yao Xiao Shu-Lei Chou Shilin Zhang Zaiping Guo Aobing Du Guanglei Cui Gaojing Yang Qing Zhao Liubing Dong Dong Zhou Feiyu Kang Hu Hong Chunyi Zhi Zhizhang Yuan Xianfeng Li Yifei Mo Yizhou Zhu Dongfang Yu Xincheng Lei Jianxiong Zhao Jiayi Wang Dong Su Yu-Guo Guo Qiang Zhang Jun Chen Li-Jun Wan 《Science China Chemistry》 SCIE EI CSCD 2024年第1期13-42,共30页
Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global ... Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global climate change.Due to the increased popularity of consumer electronics and electric vehicles,lithium-ion batteries have quickly become the most successful rechargeable batteries in the past three decades,yet growing demands in diversified application scenarios call for new types of rechargeable batteries.Tremendous efforts are made to developing the next-generation post-Li-ion rechargeable batteries,which include,but are not limited to solid-state batteries,lithium–sulfur batteries,sodium-/potassium-ion batteries,organic batteries,magnesium-/zinc-ion batteries,aqueous batteries and flow batteries.Despite the great achievements,challenges persist in precise understandings about the electrochemical reaction and charge transfer process,and optimal design of key materials and interfaces in a battery.This roadmap tends to provide an overview about the current research progress,key challenges and future prospects of various types of rechargeable batteries.New computational methods for materials development,and characterization techniques will also be discussed as they play an important role in battery research. 展开更多
关键词 energy storage rechargeable batteries battery materials ELECTROCHEMISTRY
原文传递
MOF-based magnetic microrobot swarms for pH-responsive targeted drug delivery
19
作者 Qinyi Cao Yifan Zhang +3 位作者 Yanping Tang Changjin Wu Jizhuang Wang Dan Li 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第4期1216-1223,共8页
Metal-organic frameworks(MOFs)hold significant potential as vehicles for drug delivery due to their expansive specific surface area,biocompatibility,and versatile attributes.Concurrently,magnetically actuated micro/na... Metal-organic frameworks(MOFs)hold significant potential as vehicles for drug delivery due to their expansive specific surface area,biocompatibility,and versatile attributes.Concurrently,magnetically actuated micro/nano-robots(MNRs)offer distinct advantages,such as untethered and precise manipulation.The fusion of these technologies presents a promising avenue for achieving non-invasive targeted drug delivery.Here,we report a MOF-based magnetic microrobot swarm(MMRS)for targeted therapy.Our approach overcomes limitations associated with a single MNR,including limited drug loading and the risk of loss during manipulation.We select Zeolitic Imidazolate Framework-8(ZIF-8)as the drug vehicle for its superior loading potential and p H-sensitive decomposition.Our design incorporates magnetic responsive components into the one-pot synthesis of Fe@ZIF-8,enabling collective behaviors under actuation.Tuning the yaw angle of alternating magnetic fields and nanoparticles'amount,the MMRSs with controllable size achieve instantaneous transformation among different configurations,including vortex-like swarms,chain-like swarms,and elliptical swarms,facilitating adaptation to environmental variations.Transported to the subcutaneous T24 tumor site,the MMRSs with encapsulated doxorubicin(DOX)automatically degrade and release the drug,leading to a dramatic reduction of the tumor in vivo.Our investigation signifies a significant advancement in the integration of biodegradable MOFs into microrobot swarms,ushering in new avenues for accurate and non-invasive targeted drug delivery. 展开更多
关键词 magnetic microrobot swarm MOF nanoparticles magnetic propulsion pH-responsive drug release targeted drug delivery
原文传递
Stable Zinc Anodes Enabled by Zincophilic Cu Nanowire Networks 被引量:3
20
作者 Shiyin Xie Yang Li +4 位作者 Xu Li Yujun Zhou Ziqi Dang Jianhua Rong Liubing Dong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第2期311-323,共13页
Zn-based electrochemical energy storage(EES)systems have received tremendous attention in recent years,but their zinc anodes are seriously plagued by the issues of zinc dendrite and side reactions(e.g.,corrosion and h... Zn-based electrochemical energy storage(EES)systems have received tremendous attention in recent years,but their zinc anodes are seriously plagued by the issues of zinc dendrite and side reactions(e.g.,corrosion and hydrogen evolution).Herein,we report a novel strategy of employing zincophilic Cu nanowire networks to stabilize zinc anodes from multiple aspects.According to experimental results,COMSOL simulation and density functional theory calculations,the Cu nanowire networks covering on zinc anode surface not only homogenize the surface electric field and Zn^(2+)concentration field,but also inhibit side reactions through their hydrophobic feature.Meanwhile,facets and edge sites of the Cu nanowires,especially the latter ones,are revealed to be highly zincophilic to induce uniform zinc nucleation/deposition.Consequently,the Cu nanowire networks-protected zinc anodes exhibit an ultralong cycle life of over 2800 h and also can continuously operate for hundreds of hours even at very large charge/discharge currents and areal capacities(e.g.,10 mA cm^(-2)and 5 mAh cm^(-2)),remarkably superior to bare zinc anodes and most of currently reported zinc anodes,thereby enabling Zn-based EES devices to possess high capacity,16,000-cycle lifespan and rapid charge/discharge ability.This work provides new thoughts to realize long-life and high-rate zinc anodes. 展开更多
关键词 Zn-based energy storage Zinc anodes Zinc dendrite Zincophilic materials Cu nanowire networks
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部