期刊文献+
共找到799篇文章
< 1 2 40 >
每页显示 20 50 100
Towards High-Energy and Anti-Self-Discharge Zn-Ion Hybrid Supercapacitors with New Understanding of the Electrochemistry 被引量:9
1
作者 Yang Li Wang Yang +6 位作者 Wu Yang Ziqi Wang Jianhua Rong Guoxiu Wang Chengjun Xu Feiyu Kang Liubing Dong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第6期268-283,共16页
Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and ant... Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and anti-self-discharge ZHSs are realized based on the fibrous carbon cathodes with hierarchically porous surface and O/N heteroatom functional groups.Hierarchically porous surface of the fabricated free-standing fibrous carbon cathodes not only provides abundant active sites for divalent ion storage,but also optimizes ion transport kinetics.Consequently,the cathodes show a high gravimetric capacity of 156 mAh g^(−1),superior rate capability(79 mAh g^(−1)with a very short charge/discharge time of 14 s)and exceptional cycling stability.Meanwhile,hierarchical pore structure and suitable surface functional groups of the cathodes endow ZHSs with a high energy density of 127 Wh kg−1,a high power density of 15.3 kW kg^(−1)and good anti-self-discharge performance.Mechanism investigation reveals that ZHS electrochemistry involves cation adsorption/desorption and Zn_(4)SO_(4)(OH)_(6)·5H_(2)O formation/dissolution at low voltage and anion adsorption/desorption at high voltage on carbon cathodes.The roles of these reactions in energy storage of ZHSs are elucidated.This work not only paves a way for high-performance cathode materials of ZHSs,but also provides a deeper understanding of ZHS electrochemistry. 展开更多
关键词 Zn-ion hybrid supercapacitor Carbon material Fibrous cathode Hierarchical pore structure HIGH-ENERGY
下载PDF
Fabrication of Silane and Desulfurization Ash Composite Modified Polyurethane and Its Interfacial Binding Mechanism
2
作者 吴旺华 CHEN Shuichang +4 位作者 YE Haodong 李世迁 LIN Yuanzhi 陈庆华 XIAO Liren 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期288-297,共10页
Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration ... Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration of DA as hard segments into the PU molecular chain.The effects of DA content(φ)on the mechanical properties,thermal stability,and hydrophobicity of PU,both before and after the addition of KH550,were thoroughly examined.The results of microscopic mechanism analysis confirmed that KH550 chemically modified the surface of DA,facilitating its incorporation into the polyurethane molecular chain,thereby significantly enhancing the compatibility and dispersion of DA within the PU matrix.When the mass fraction of modified DA(MDA)reached 12%,the mechanical properties,thermal stability,and hydrophobicity of the composites were substantially improved,with the tensile strength reaching 14.9 MPa,and the contact angle measuring 100.6°. 展开更多
关键词 POLYURETHANE silane coupling agent desulfurization ash modification mechanical property HYDROPHOBICITY thermal stability
下载PDF
The Role of Grain Boundaries in Organic-Inorganic Hybrid Perovskite Solar Cells and its Current Enhancement Strategies:A Review
3
作者 Jindan Zhang Shicheng Tang +4 位作者 Mengqi Zhu Zhenghong Li Zhibin Cheng Shengchang Xiang Zhangjing Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期175-204,共30页
Grain boundaries(GBs)in perovskite polycrystalline films are the most sensitive place for the formation of the defect states and the accumulation of impurities.Thus,abundant works have been carried out to explore thei... Grain boundaries(GBs)in perovskite polycrystalline films are the most sensitive place for the formation of the defect states and the accumulation of impurities.Thus,abundant works have been carried out to explore their properties and then try to solve the induced problems.Currently,two important issues remain.First,the role of GBs in charge carrier dynamics is unclear due to their component complexity/defect tolerance nature and the insufficiency in testing accuracy.Some works conclude that GBs are benign,while others consider GBs as carrier recombination centers.Things for sure are the deterioration in ion transport and perovskite decomposition.Second,to solve the known hazards of GBs,a lot of additives have been added to anchoring ions and passivate defects.But in most of those works,GBs and perovskite surfaces are treated in the same manner ignoring the fact that GB is essentially a homogeneous junction in a narrow and slender space,while surface is a heterogeneous junction with a stratified structure.In this review,we focus on works insight into GBs and additives for them.Additionally,we also discuss the prospects of the maturity of GB exploration toward upscaling the manufacture of perovskite photovoltaic and related optoelectronic devices. 展开更多
关键词 ADDITIVES charge carrier dynamics grain boundaries perovskite solar cells
下载PDF
Synergism of preintercalated manganese ions and lattice water in vanadium oxide cathodes for high-capacity and long-life Zn-ion batteries
4
作者 Mengjing Wu Rongrong Li +3 位作者 Kai Yang Lijiang Yin Weikang Hu Xiong Pu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期709-717,共9页
Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials... Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials.In this work,we present an intercalation mechanism-based cathode materials for AZIB,i.e.the vanadium oxide with pre-intercalated manganese ions and lattice water(noted as MVOH).The synergistic effect between Mn^(2+)and lattice H_(2)O not only expands the interlayer spacing,but also significantly enhances the structural stability.Systematic in-situ and ex-situ characterizations clarify the Zn^(2+)/H^(+)co–(de)intercalation mechanism of MVOH in aqueous electrolyte.The demonstrated remarkable structure stability,excellent kinetic behaviors and ion-storage mechanism together enable the MVOH to demonstrate satisfactory specific capacity of 450 mA h g^(−1)at 0.2 A g^(−1),excellent rate performance of 288.8 mA h g^(−1)at 10 A g^(−1)and long cycle life over 20,000 cycles at 5 A g^(−1).This work provides a practical cathode material,and contributes to the understanding of the ion-intercalation mechanism and structural evolution of the vanadium-based cathode for AZIBs. 展开更多
关键词 Zn-ion batteries Vanadium oxide Pre-intercalation Lattice water Manganese ion
下载PDF
Unraveling the roles of atomically-dispersed Au in boosting photocatalytic CO_(2)reduction and aryl alcohol oxidation
5
作者 Jian Lei Nan Zhou +3 位作者 Shuaikang Sang Sugang Meng Jingxiang Low Yue Li 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期163-173,共11页
Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity,abundant surface active sites,and efficient charge separation.Nevertheless,the roles... Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity,abundant surface active sites,and efficient charge separation.Nevertheless,the roles of different forms of atomically-dispersed metals(i.e.,single-atoms and atomic clusters)in photocatalytic reactions remain ambiguous.Herein,we developed an ethylenediamine(EDA)-assisted reduction method to controllably synthesize atomically dispersed Au in the forms of Au single atoms(Au_(SA)),Au clusters(Au_(C)),and a mixed-phase of Au_(SA)and Au_(C)(Au_(SA+C))on CdS.In addition,we elucidate the synergistic effect of Au_(SA)and Au_(C)in enhancing the photocatalytic performance of CdS substrates for simultaneous CO_(2)reduction and aryl alcohol oxidation.Specifically,Au_(SA)can effectively lower the energy barrier for the CO_(2)→*COOH conversion,while Au_(C)can enhance the adsorption of alcohols and reduce the energy barrier for dehydrogenation.As a result,the Au_(SA)and Au_(C)co-loaded CdS show impressive overall photocatalytic CO_(2)conversion performance,achieving remarkable CO and BAD production rates of 4.43 and 4.71 mmol g^(−1)h^(−1),with the selectivities of 93%and 99%,respectively.More importantly,the solar-to-chemical conversion efficiency of Au_(SA+C)/CdS reaches 0.57%,which is over fivefold higher than the typical solar-to-biomass conversion efficiency found in nature(ca.0.1%).This study comprehensively describes the roles of different forms of atomically-dispersed metals and their synergistic effects in photocatalytic reactions,which is anticipated to pave a new avenue in energy and environmental applications. 展开更多
关键词 Photocatalysis Atomically-dispersed metal SINGLE-ATOM CO_(2)reduction Aryl alcohol oxidation
下载PDF
Structure Characterization and Dephosphorization Effect Analysis of Oyster Shell-silica Micropowder Waste Water Dephosphorization Materials 被引量:2
6
作者 赖寿莲 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第1期33-38,共6页
In this work,the effects of pH value of waste water and initial concentration of phosphorus on dephosphorization materials were investigated.The materials were prepared by shaping,sintering and hydrothermal reshaping ... In this work,the effects of pH value of waste water and initial concentration of phosphorus on dephosphorization materials were investigated.The materials were prepared by shaping,sintering and hydrothermal reshaping oyster shell and silica micro-powder.Different concentrations of phosphorus-contained waste water were simulated with potassium dihydrogen phosphate solution,the effect of dephosphorization was tested with phosphomolybdenum blue spectrophotometer method,and the crystal phase and microstructure of materials were characterized by XRD and SEM methods. It was indicated that dephosphorization was completed in 6 h when the initial phosphorus concentration in waste water was lower than 15 mg/L, and the dephosphorization time prolonged as the increase of phosphorus concentration. It was observed that the pH value of waste water influenced dephosphorization significantly, and neutral subalkalic environment favored dephosphorization. When the pH value was 11, the efficiency of dephosphozation was the greatest. For waste water with an initial concentration of 20 mg/L, the dephosphozation rate is close to 100% in8 h. 展开更多
关键词 oyster shell silica micro-powder hydrothermal reaction waste water dephosphorization materials environmental-friendly material
下载PDF
Enantiodifferentiation of chiral diols and diphenols via recognition-enabled chromatographic^(19)F NMR
7
作者 Yilin Zeng Wenjing Bao +1 位作者 Guangxing Gu Yanchuan Zhao 《Magnetic Resonance Letters》 2024年第4期34-42,共9页
A novel and efficient method for distinguishing between chiral diols and diphenols has been established through the use of^(19)F NMR spectroscopy.Central to this system's efficacy is a chiral amine,strategically m... A novel and efficient method for distinguishing between chiral diols and diphenols has been established through the use of^(19)F NMR spectroscopy.Central to this system's efficacy is a chiral amine,strategically modified with a CF_(3)group.This amine reacts in-situ with 2-formylphenylboronic acid to create a chiral^(19)F-labeled probe.This probe demonstrates discriminatory capabilities by interacting with hydroxy-containing analytes to form boronic esters.These esters produce distinct^(19)F NMR signals that vary according to their stereoconfiguration,facilitating accurate chiral differentiation.The method's resolution capacity was demonstrated by successfully identifying 12 distinct chiral analytes(six pairs of enantiomers)in complex mixtures,highlighting its extensive potential in diverse chiral analysis applications. 展开更多
关键词 ^(19)F NMR Multi-component analysis Chiral discrimination Enantiocomposition
下载PDF
Synthesis and Characterization of Two New Photochromic Inorganic-organic Hybrid Materials Based on Keggin-type Polyoxometalates
8
作者 库宗军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第3期367-371,共5页
Two new photochromic inorganic-organic hybrid materials formed from Keggin-type polyoxometalates(POMs) and metronidazole (C6H9N3O3, MNZ), formulated as H3PMo12OaO-3MNZ·3H2O (1) and H3PW12O40.3MNZ·3H2O... Two new photochromic inorganic-organic hybrid materials formed from Keggin-type polyoxometalates(POMs) and metronidazole (C6H9N3O3, MNZ), formulated as H3PMo12OaO-3MNZ·3H2O (1) and H3PW12O40.3MNZ·3H2O(2), were synthesized and characterized by elemental analysis, IR spectra, electronic spectra, electron spin resonance (ESR) spectra and thermogravi-metry-differential thermal analysis (TG-DTA). Reflectance spectra show the presence of weak intermolecular charge transfer between the organic and inorganic moieties in the solid state. The photochromic properties were studied by solid diffuse reflectance spectra and ESR spectra, and the photochromic reactions were found to exhibit first-order kinetics. TG-DTA showed that two hybrid materials have similar thermal behavior. 展开更多
关键词 POLYOXOMETALATE METRONIDAZOLE hybrid material PHOTOCHROMISM kinetics
下载PDF
Synthesis,Crystal Structure and Electrochemistry Properties of an Iron(Ⅲ) Complex Based on the 3,5-Pyridinedicarboxylate and Water Ligands
9
作者 冯勋 赵建社 +1 位作者 王利亚 师新阁 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第2期290-296,共7页
Reaction of 3,5-pyridine-dicarboxylic acid(3,5-PydcH2) with iron salt in hydrothermal condition results in the formation of a three-dimensional self-assembly network formulated as [C14H14Fe2N2O12]n,and it has been s... Reaction of 3,5-pyridine-dicarboxylic acid(3,5-PydcH2) with iron salt in hydrothermal condition results in the formation of a three-dimensional self-assembly network formulated as [C14H14Fe2N2O12]n,and it has been structurally characterized by elemental analysis,IR spectra and X-ray diffraction.It crystallizes in the monoclinic system,space group C2/c with a=9.9633(15),b=12.0942(18),c=7.4297(11)A and β=105.822o.The units of Fe2(pydc)2·2H2O are linked into a one-dimensional structure via the chelate carboxylate groups from the 3,5-pyridine-dicarboxylate.The interlayer hydrogen bonding interactions result in a three-dimensional supramolecular architecture.In the complex,the Fe(Ⅲ) ion displays a slightly distorted pentagonal bipyramidal geometry with seven coordination numbers.Cyclic-voltammetry measurement reveals the oxidation and reduction processes for the complex are quasi-reversible in nature. 展开更多
关键词 X-ray structure iron(Ⅲ) complex TOPOLOGY CYCLIC-VOLTAMMETRY
下载PDF
Preparation and Application of Chitosan-based Polyelectrolyte Complex Materials: An Overview
10
作者 Yukai Lin Xinyue Wang +1 位作者 Qinghai Liu Yan Fang 《Paper And Biomaterials》 CAS 2022年第4期1-19,共19页
Chitosan,a renewable,non-toxic,and natural cationic polyelectrolyte,can be combined with many anionic polyelectrolytes(such as sodium alginate,hyaluronic acid,xylan,and gelatin)via electrostatic forces to form chitosa... Chitosan,a renewable,non-toxic,and natural cationic polyelectrolyte,can be combined with many anionic polyelectrolytes(such as sodium alginate,hyaluronic acid,xylan,and gelatin)via electrostatic forces to form chitosan-based polyelectrolyte composites under certain conditions.This review summarizes various methods of preparing chitosan-based polyelectrolyte composites and analyzes their applications in clinical medicine and agriculture,as well as pharmaceutical,tissue,food,environmental,and textile engineering fields.The future development direction and potential of chitosan-based polyelectrolytes are also discussed. 展开更多
关键词 natural polymer CHITOSAN polyelectrolyte complex electrostatic action preparation method application research
下载PDF
Characterization and photoelectrochemical performance of Zn-doped TiO_2 films by sol-gel method 被引量:9
11
作者 Li-ying QIAO Feng-yu XIE +3 位作者 Ming-hui XIE Cai-hua GONG Wei-lang WANG Jia-cheng GAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第8期2109-2116,共8页
Zn-doped TiO2 (Zn?TiO2) thin films were prepared by the sol?gel method on titanium substrates with heat treatment at different temperatures. The effects of heat treatment temperatures and Zn doping on the structure, p... Zn-doped TiO2 (Zn?TiO2) thin films were prepared by the sol?gel method on titanium substrates with heat treatment at different temperatures. The effects of heat treatment temperatures and Zn doping on the structure, photocathodic protection and photoelectrochemical properties of TiO2 thin films were investigated. It is indicated that the photoelectrical performance of the Zn?TiO2 films is enhanced with the addition of Zn element compared with the pure-TiO2 film and the largest decline by 897 mV in the electrode potential is achieved under 300 °C heat treatment. SEM?EDS analyses show that Zn element is unevenly distributed in Zn?TiO2 films; XRD patterns reveal that the grain size of Zn?TiO2 is smaller than that of pure-TiO2; FTIR results indicate that Zn - O bond forms on Zn?TiO2 surface. Ultraviolet visible absorption spectra prove that Zn?TiO2 shifts to visible light region.Mott?Shottky curves show that the flat-band potential of Zn?TiO2 is more negative and charge carrier density is bigger than that ofpure-TiO2, implying that under the synergy of the width of the space-charge layer, carrier density and flat-band potential, Zn?TiO2 with 300 °C heat treatment displays the best photocathodic protection performance. 展开更多
关键词 TiO2 films Zn-doping photocathodic protection photoelectrochemical activity sol.gel method
下载PDF
Advanced Anode Materials of Potassium Ion Batteries:from Zero Dimension to Three Dimensions 被引量:8
12
作者 Jiefeng Zheng Yuanji Wu +3 位作者 Yingjuan Sun Jianhua Rong Hongyan Li Li Niu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第1期208-244,共37页
Potassium ion batteries(PIBs)with the prominent advantages of sufficient reserves and economical cost are attractive candidates of new rechargeable batteries for large-grid electrochemical energy storage systems(EESs)... Potassium ion batteries(PIBs)with the prominent advantages of sufficient reserves and economical cost are attractive candidates of new rechargeable batteries for large-grid electrochemical energy storage systems(EESs).However,there are still some obstacles like large size of K+to commercial PIBs applications.Therefore,rational structural design based on appropriate materials is essential to obtain practical PIBs anode with K+accommodated and fast diffused.Nanostructural design has been considered as one of the effective strategies to solve these issues owing to unique physicochemical properties.Accordingly,quite a few recent anode materials with different dimensions in PIBs have been reported,mainly involving in carbon materials,metal-based chalcogenides(MCs),metal-based oxides(MOs),and alloying materials.Among these anodes,nanostructural carbon materials with shorter ionic transfer path are beneficial for decreasing the resistances of transportation.Besides,MCs,MOs,and alloying materials with nanostructures can effectively alleviate their stress changes.Herein,these materials are classified into 0D,1D,2D,and 3D.Particularly,the relationship between different dimensional structures and the corresponding electrochemical performances has been outlined.Meanwhile,some strategies are proposed to deal with the current disadvantages.Hope that the readers are enlightened from this review to carry out further experiments better. 展开更多
关键词 Potassium ion batteries ANODE Structure design NANOMATERIALS Dimensions
下载PDF
Ultralight Magnetic and Dielectric Aerogels Achieved by Metal-Organic Framework Initiated Gelation of Graphene Oxide for Enhanced Microwave Absorption 被引量:12
13
作者 Xiaogu Huang Jiawen Wei +5 位作者 Yunke Zhang BinBin Qian Qi Jia Jun Liu Xiaojia Zhao Gaofeng Shao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期16-31,共16页
The development of a convenient methodology for synthesizing the hierarchically porous aerogels comprising metal–organic frameworks(MOFs)and graphene oxide(GO)building blocks that exhibit an ultralow density and unif... The development of a convenient methodology for synthesizing the hierarchically porous aerogels comprising metal–organic frameworks(MOFs)and graphene oxide(GO)building blocks that exhibit an ultralow density and uniformly distributed MOFs on GO sheets is important for various applications.Herein,we report a facile route for synthesizing MOF/reduced GO(rGO)aerogels based on the gelation of GO,which is directly initiated using MOF crystals.Free metal ions exposed on the surface of MIL-88A nanorods act as linkers that bind GO nanosheets to a three-dimensional porous network via metal–oxygen covalent or electrostatic interactions.The MOF/rGOderived magnetic and dielectric aerogels Fe_(3)O_(4)@C/rGO and Ni-doped Fe_(3)O_(4)@C/rGO show notable microwave absorption(MA)performance,simultaneously achieving strong absorption and broad bandwidth at low thickness of 2.5(-58.1 dB and 6.48 GHz)and 2.8 mm(-46.2 dB and 7.92 GHz)with ultralow filling contents of 0.7 and 0.6 wt%,respectively.The microwave attenuation ability of the prepared aerogels is further confirmed via a radar cross-sectional simulation,which is attributed to the synergistic effects of their hierarchically porous structures and heterointerface engineering.This work provides an effective pathway for fabricating hierarchically porous MOF/rGO hybrid aerogels and offers magnetic and dielectric aerogels for ultralight MA. 展开更多
关键词 Magnetic and dielectric aerogels Metal-organic frameworks Gelation mechanism Microwave absorption Radar cross-sectional simulation
下载PDF
Preparation of CS-CMC Bipolar Membrane and its Application in Electro-generated FeO_4^(2-) 被引量:5
14
作者 Yu Xi REN Zhen CHEN Ri Yao CHEN Xi ZHEN Ya Ming GENG 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第11期1527-1530,共4页
CS-CMC bipolar membrane was prepared and the cross-section photograph of CS-CMC BM was observed by SEM. FT-IR spectrum indicated that CS-CMC BM contained -N=CRH2^+ and -COO^- functional groups. The charge density of ... CS-CMC bipolar membrane was prepared and the cross-section photograph of CS-CMC BM was observed by SEM. FT-IR spectrum indicated that CS-CMC BM contained -N=CRH2^+ and -COO^- functional groups. The charge density of -N--CRH2^+ in CS membrane was about 14.13 mmol/g and the charge density of -COO in CMC membrane was about 9.01 mmol/g. The electrochemistry properties of CS-CMC BM were also studied. CS-CMC BM not only can effectively stop FeO4^2- from diffusing into the cathode chamber, but also plays an important role in the supply of OH" consumed during the electro-generated FeO4^2- process. 展开更多
关键词 Bipolar membrane (BM) cylinder electrolysis bath carboxymethylcellulose (CMC) chitosan (CS) ferrate (FeO4^2-) colloid titration.
下载PDF
Simultaneously Regulating Uniform Zn^(2+) Flux and Electron Conduction by MOF/rGO Interlayers for High‑Performance Zn Anodes 被引量:8
15
作者 Ziqi Wang Liubing Dong +5 位作者 Weiyuan Huang Hao Jia Qinghe Zhao Yidi Wang Bin Fei Feng Pan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第5期34-44,共11页
Owing to the merits of low cost,high safety and environmental benignity,rechargeable aqueous Zn-based batteries(ZBs)have gained tremendous attention in recent years.Nevertheless,the poor reversibility of Zn anodes tha... Owing to the merits of low cost,high safety and environmental benignity,rechargeable aqueous Zn-based batteries(ZBs)have gained tremendous attention in recent years.Nevertheless,the poor reversibility of Zn anodes that originates from dendrite growth,surface passivation and corrosion,severely hinders the further development of ZBs.To tackle these issues,here we report a Janus separator based on a Zn-ion conductive metal-organic framework(MOF)and reduced graphene oxide(rGO),which is able to regulate uniform Zn2+flux and electron conduction simultaneously during battery operation.Facilitated by the MOF/rGO bifunctional interlayers,the Zn anodes demonstrate stable plating/stripping behavior(over 500 h at 1 mA cm^(−2)),high Coulombic efficiency(99.2%at 2 mA cm^(−2) after 100 cycles)and reduced redox barrier.Moreover,it is also found that the Zn corrosion can be effectively retarded through diminishing the potential discrepancy on Zn surface.Such a separator engineering also saliently promotes the overall performance of Zn|MnO2 full cells,which deliver nearly 100%capacity retention after 2000 cycles at 4 A g^(−1) and high power density over 10 kW kg^(−1).This work provides a feasible route to the high-performance Zn anodes for ZBs. 展开更多
关键词 Zn-based battery Zn anode Janus separator Metal-organic framework Reduced graphene oxide
下载PDF
Gallium trichloride-catalyzed conjugate addition of indole and pyrrole to α,β-unsaturated ketones in aqueous media 被引量:5
16
作者 Rong Xu Jin Chang Ding +2 位作者 Xi An Chen Miao Chang Liu Hua Yue Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第6期676-679,共4页
Michael addition of indole and pyrrole to a variety of α, β-unsaturated ketones was efficiently promoted by a catalytic amount of GaCl3 in aqueous media to afford the corresponding products in good to excellent yields.
关键词 Gallium trichloride Michael addition INDOLE PYRROLE α β-Unsaturated ketones
下载PDF
High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials 被引量:9
17
作者 Xuechao Pu Baozheng Jiang +4 位作者 Xianli Wang Wenbao Liu Liubing Dong Feiyu Kang Chengjun Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期126-140,共15页
Rechargeable aqueous zinc-ion batteries(ZIB s) have been gaining increasing interest for large-scale energy storage applications due to their high safety,good rate capability,and low cost.However,the further developme... Rechargeable aqueous zinc-ion batteries(ZIB s) have been gaining increasing interest for large-scale energy storage applications due to their high safety,good rate capability,and low cost.However,the further development of ZIB s is impeded by two main challenges:Currently reported cathode materials usually suffer from rapid capacity fading or high toxicity,and meanwhile,unstable zinc stripping/plating on Zn anode seriously shortens the cycling life of ZIBs.In this paper,metal-organic framework(MOF) materials are proposed to simultaneously address these issues and realize high-performance ZIB s with Mn(BTC) MOF cathodes and ZIF-8-coated Zn(ZIF-8@Zn) anodes.Various MOF materials were synthesized,and Mn(BTC) MOF was found to exhibit the best Zn^2+-storage ability with a capacity of 112 mAh g^-1.Zn^2+ storage mechanism of the Mn(BTC) was carefully studied.Besides,ZIF-8@Zn anodes were prepared by coating ZIF-8 MOF material on Zn foils.Unique porous structure of the ZIF-8 coating guided uniform Zn stripping/plating on the surface of Zn anodes.As a result,the ZIF-8@Zn anodes exhibited stable Zn stripping/plating behaviors,with 8 times longer cycle life than bare Zn foils.Based on the above,high-performance aqueous ZIBs were constructed using the Mn(BTC) cathodes and the ZIF-8@Zn anodes,which displayed an excellent long-cycling stability without obvious capacity fading after 900 charge/discharge cycles.This work provides a new opportunity for high-performance energy storage system. 展开更多
关键词 Zinc-ion battery Metal-organic framework Cathode material Zn anode
下载PDF
Locating the cocktail and scaling-relation breaking effects of high-entropy alloy catalysts on the electrocatalytic volcano plot 被引量:4
18
作者 Junxiang Chen Yaxin Ji 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第11期2889-2897,共9页
High entropy alloys(HEAs)have been the star materials in electrocatalysis research in recent years.One of their key features is the greatly increased multiplicity of active sites compared to conventional catalytic mat... High entropy alloys(HEAs)have been the star materials in electrocatalysis research in recent years.One of their key features is the greatly increased multiplicity of active sites compared to conventional catalytic materials.This increased multiplicity stimulates a cocktail effect and a scaling-relation breaking effect,and results in improved activity.However,the multiplicity of active sites in HEAs also poses new problems for mechanistic studies.One apparent problem is the inapplicability to HEA catalysts of the currently most popular mechanistic study method,which uses the electrocatalytic theoretical framework(ETF)based on the computational hydrogen electrode(CHE).The ETF uses a single adsorption energy to represent the catalyst,i.e.,a catalyst is represented by a'point'in the volcanic relationship.It naturally does not involve the multiplicity of active sites of a catalyst,and hence loses brevity in expressing the cocktail effect and scaling-relation breaking effect in HEA catalysis.This paper attempts to solve this inapplicability.Based on the fact that the adsorption energy distribution of HEAs is close to a normal distribution,the mean and variance of the adsorption energy distribution are introduced as descriptors of the ETF,replacing the original single adsorption energy.A quantitative relationship between the variance and the cocktail and scaling-relation braking effects is established.We believe the method described in this work will make the ETF more effective in mechanistic studies of HEA electrocatalysis. 展开更多
关键词 High-entropy alloy Electrocatalysis Volcano plot Cocktail effect Scaling-relation breaking effect Adsorption energy distribution
下载PDF
Hydrothermal Synthesis, Crystal Structure and Fluorescent Property of a Cd(Ⅱ) Complex Based on Biimidazole and Isonicotinate-N-oxide 被引量:4
19
作者 毛稳玲 胡宗球 丁瑜 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第4期587-591,共5页
A new complex [Cd(H2biim)2(H2O)2]·(ino)2·4H2O (H2biim = 2,2'-biimidazole, ino = isonicotinate-N-oxide) has been prepared and characterized by single-crystal X-ray diffraction analysis, IR and fluore... A new complex [Cd(H2biim)2(H2O)2]·(ino)2·4H2O (H2biim = 2,2'-biimidazole, ino = isonicotinate-N-oxide) has been prepared and characterized by single-crystal X-ray diffraction analysis, IR and fluorescence spectra analysis. The crystal is of triclinic system, space group P1 with a = 7.5380(6), b = 8.0402(7), c = 13.5094(11) , α = 104.269(1), β = 93.604(1), γ = 98.349(1)°, V = 780.93(11) 3, Mr = 765.00, Dc = 1.627 g/cm3, F(000) = 390, μ = 0.776 mm-1 and Z = 1. The final R = 0.0322 and wR = 0.0825 for 7038 observed reflections with I 2σ(I) and R = 0.0341 and wR = 0.0832 for all data. The title complex exhibits an infinite chain-like structure through bridging isonicotinate-N-oxide. Strong interchain hydrogen bonds between isonicotinate-N-oxide and H2biim result in the robust 3-D supramolecular architecture. Moreover, the complex shows strong photoluminescence with emission maximum at λ = 401 nm upon λex = 330 nm. 展开更多
关键词 cadmium(Ⅱ) complex crystal structure 2 2-biimidazole isonicotinc acid N-oxide hydrothermal synthesis fluorescent property
下载PDF
Critical roles of molybdate anions in enhancing capacitive and oxygen evolution behaviors of LDH@PANI nanohybrids 被引量:3
20
作者 Qiang Hu Hua Wang +7 位作者 Feifei Xiang Qiaoji Zheng Xinguo Ma Yu Huo Fengyu Xie Chenggang Xu Dunmin Lin Jisong Hu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第6期980-993,共14页
Low-overpotential layered hydroxides(LDHs)with high theoretical capacity are promising electrodes for supercapaterry and oxygen evolution reaction;however,the low electronic conductivity and insufficient active sites ... Low-overpotential layered hydroxides(LDHs)with high theoretical capacity are promising electrodes for supercapaterry and oxygen evolution reaction;however,the low electronic conductivity and insufficient active sites of bulk LDHs increase the internal resistance and reduce the capacity and oxygen-production efficiency of electrodes.Herein,we prepared a polyaniline-coated Ni-Co-layered double hydroxide intercalated with MoO_(4)^(2−)(M-LDH@PANI)composite electrode using a two-step method.As the amount of MoO_(4)^(2−)in the LDH increases,acicular microspheres steadily evolve into flaky microspheres with a high surface area,providing more active electrochemical sites.Moreover,the amorphous PANI coating of M-LDH boosts the electronic conductivity of the composite electrode.Accordingly,the M-LDH@PANI at an appropriate level of MoO_(4)^(2−)exhibits significantly enhanced energy storage and catalytic performance.Experimental analyses and theoretical calculations reveal that a small amount of MoO_(4)^(2−)is conducive to the expansion of LDH interlayer spacing,while an excessive amount of MoO_(4)^(2−)combines with the H atoms of LDH,thus competing with OH^(−),resulting in reduced electrochemical performance.Moreover,M-LDH flaky microspheres can efficiently modulate deprotonation energy,greatly accelerating surface redox reactions.This study provides an explanation for an unconventional mechanism,and a method for the modification of LDH-based materials for anion intercalation. 展开更多
关键词 Layered hydroxide LDH PANI MoO_(4)^(2−) Intercalated hierarchical structures Supercapaterry Electrocatalyst
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部