In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit...In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.展开更多
To solve the problem of delayed update of spectrum information(SI) in the database assisted dynamic spectrum management(DB-DSM), this paper studies a novel dynamic update scheme of SI in DB-DSM. Firstly, a dynamic upd...To solve the problem of delayed update of spectrum information(SI) in the database assisted dynamic spectrum management(DB-DSM), this paper studies a novel dynamic update scheme of SI in DB-DSM. Firstly, a dynamic update mechanism of SI based on spectrum opportunity incentive is established, in which spectrum users are encouraged to actively assist the database to update SI in real time. Secondly, the information update contribution(IUC) of spectrum opportunity is defined to describe the cost of accessing spectrum opportunity for heterogeneous spectrum users, and the profit of SI update obtained by the database from spectrum allocation. The process that the database determines the IUC of spectrum opportunity and spectrum user selects spectrum opportunity is mapped to a Hotelling model. Thirdly, the process of determining the IUC of spectrum opportunities is further modelled as a Stackelberg game by establishing multiple virtual spectrum resource providers(VSRPs) in the database. It is proved that there is a Nash Equilibrium in the game of determining the IUC of spectrum opportunities by VSRPs. Finally, an algorithm of determining the IUC based on a genetic algorithm is designed to achieve the optimal IUC. The-oretical analysis and simulation results show that the proposed method can quickly find the optimal solution of the IUC, and ensure that the spectrum resource provider can obtain the optimal profit of SI update.展开更多
In this paper,the covert age of information(CAoI),which characterizes the timeliness and covertness performance of communication,is first investigated in the short-packet covert communication with time modulated retro...In this paper,the covert age of information(CAoI),which characterizes the timeliness and covertness performance of communication,is first investigated in the short-packet covert communication with time modulated retrodirective array(TMRDA).Specifically,the TMRDA is designed to maximize the antenna gain in the target direction while the side lobe is sufficiently suppressed.On this basis,the covertness constraint and CAoI are derived in closed form.To facilitate the covert transmission design,the transmit power and block-length are jointly optimized to minimize the CAoI,which demonstrates the trade-off between covertness and timelessness.Our results illustrate that there exists an optimal block-length that yields the minimum CAoI,and the presented optimization results can achieve enhanced performance compared with the fixed block-length case.Additionally,we observe that smaller beam pointing error at Bob leads to improvements in CAoI.展开更多
This paper studies a multi-unmanned aerial vehicle(UAV)enabled wireless communication system,where multiple UAVs are employed to communicate with a group of ground terminals(GTs)in the presence of potential jammers.We...This paper studies a multi-unmanned aerial vehicle(UAV)enabled wireless communication system,where multiple UAVs are employed to communicate with a group of ground terminals(GTs)in the presence of potential jammers.We aim to maximize the throughput overall GTs by jointly optimizing the UAVs’trajectory,the GTs’scheduling and power allocation.Unlike most prior studies,we consider the UAVs’turning and climbing angle constraints,the UAVs’three-dimensional(3D)trajectory constraints,minimum UAV-to-UAV(U2U)distance constraint,and the GTs’transmit power requirements.However,the formulated problem is a mixed-integer non-convex problem and is intractable to work it out with conventional optimization methods.To tackle this difficulty,we propose an efficient robust iterative algorithm to decompose the original problem be three sub-problems and acquire the suboptimal solution via utilizing the block coordinate descent(BCD)method,successive convex approximation(SCA)technique,and S-procedure.Extensive simulation results show that our proposed robust iterative algorithm offers a substantial gain in the system performance compared with the benchmark algorithms.展开更多
The traditional multi-access edge computing (MEC) capacity isoverwhelmed by the increasing demand for vehicles, leading to acute degradationin task offloading performance. There is a tremendous number ofresource-rich ...The traditional multi-access edge computing (MEC) capacity isoverwhelmed by the increasing demand for vehicles, leading to acute degradationin task offloading performance. There is a tremendous number ofresource-rich and idle mobile connected vehicles (CVs) in the traffic network,and vehicles are created as opportunistic ad-hoc edge clouds to alleviatethe resource limitation of MEC by providing opportunistic computing services.On this basis, a novel scalable system framework is proposed in thispaper for computation task offloading in opportunistic CV-assisted MEC.In this framework, opportunistic ad-hoc edge cloud and fixed edge cloudcooperate to form a novel hybrid cloud. Meanwhile, offloading decision andresource allocation of the user CVs must be ascertained. Furthermore, thejoint offloading decision and resource allocation problem is described asa Mixed Integer Nonlinear Programming (MINLP) problem, which optimizesthe task response latency of user CVs under various constraints. Theoriginal problem is decomposed into two subproblems. First, the Lagrangedual method is used to acquire the best resource allocation with the fixedoffloading decision. Then, the satisfaction-driven method based on trial anderror (TE) learning is adopted to optimize the offloading decision. Finally, acomprehensive series of experiments are conducted to demonstrate that oursuggested scheme is more effective than other comparison schemes.展开更多
Many efforts have been devoted to efficient task scheduling in Multi-Unmanned Aerial Vehicle(UAV)edge computing.However,the heterogeneity of UAV computation resource,and the task re-allocating between UAVs have not be...Many efforts have been devoted to efficient task scheduling in Multi-Unmanned Aerial Vehicle(UAV)edge computing.However,the heterogeneity of UAV computation resource,and the task re-allocating between UAVs have not been fully considered yet.Moreover,most existing works neglect the fact that a task can only be executed on the UAV equipped with its desired service function(SF).In this backdrop,this paper formulates the task scheduling problem as a multi-objective task scheduling problem,which aims at maximizing the task execution success ratio while minimizing the average weighted sum of all tasks’completion time and energy consumption.Optimizing three coupled goals in a realtime manner with the dynamic arrival of tasks hinders us from adopting existing methods,like machine learning-based solutions that require a long training time and tremendous pre-knowledge about the task arrival process,or heuristic-based ones that usually incur a long decision-making time.To tackle this problem in a distributed manner,we establish a matching theory framework,in which three conflicting goals are treated as the preferences of tasks,SFs and UAVs.Then,a Distributed Matching Theory-based Re-allocating(DiMaToRe)algorithm is put forward.We formally proved that a stable matching can be achieved by our proposal.Extensive simulation results show that Di Ma To Re algorithm outperforms benchmark algorithms under diverse parameter settings and has good robustness.展开更多
In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and tra...In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and transmission.Existing methods often rely on prior information such as low-rank characteristics or spatiotemporal correlation when recovering missing WSNs data.However,in realistic application scenarios,it is very difficult to obtain these prior information from incomplete data sets.Therefore,we aim to recover the missing WSNs data effectively while getting rid of the perplexity of prior information.By designing the corresponding measurement matrix that can capture the position of missing data and sparse representation matrix,a compressive sensing(CS)based missing data recovery model is established.Then,we design a comparison standard to select the best sparse representation basis and introduce average cross-correlation to examine the rationality of the established model.Furthermore,an improved fast matching pursuit algorithm is proposed to solve the model.Simulation results show that the proposed method can effectively recover the missing WSNs data.展开更多
By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-grow...By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC.展开更多
This article explores the use of network-connected unmanned aerial vehicle(UAV) communications as a compelling solution to achieve high-rate information transmission and support ultra-reliable UAV remote command and c...This article explores the use of network-connected unmanned aerial vehicle(UAV) communications as a compelling solution to achieve high-rate information transmission and support ultra-reliable UAV remote command and control. We first discuss the use cases of UAVs and the resulting communication requirements, accompanied with a flexible architecture for network-connected UAV communications. Then, the signal transmission and interference characteristics are theoretically analyzed, and subsequently we highlight the design and optimization considerations, including antenna design, nonorthogonal multiple access communications, as well as network selection and association optimization. Finally, case studies are provided to show the feasibility of network-connected UAV communications.展开更多
High frequency(HF) communication, commonly covering frequency range between 3 and 30 MHz, is an important wireless communication paradigm to offer over-thehorizon or even global communications with ranges up to thousa...High frequency(HF) communication, commonly covering frequency range between 3 and 30 MHz, is an important wireless communication paradigm to offer over-thehorizon or even global communications with ranges up to thousands of kilometers via skywave propagation with ionospheric refraction. It has widespread applications in fields such as emergency communications in disaster areas, remote communications with aircrafts or ships and non-light-of-the-sight military operations. This tutorial article overviews the history of HF communication, demystifies the recent advances, and provides a preview of the next few years, which the authors believe will see fruitful outputs towards wideband, intelligent and integrated HF communications. Specifically, we first present brief preliminaries on the unique features of HF communications to facilitate general readers in the communication community. Then, we provide a historical review to show the technical evolution on the three generations of HF communication systems. Further, we highlight the key challenges and research directions. We hope that this article will stimulate more interests in addressing the technical challenges on the research and development of future HF radio communication systems.展开更多
This paper studies a multiple unmanned aerial vehicle(UAV)relaying communication system,where multiple UAV re-lays assist the blocked communication between a group of ground users(GUs)and a base station(BS).Since the ...This paper studies a multiple unmanned aerial vehicle(UAV)relaying communication system,where multiple UAV re-lays assist the blocked communication between a group of ground users(GUs)and a base station(BS).Since the UAVs only have limited-energy in practice,our design aims to maximize the energy efficiency(EE)through jointly designing the communica-tion scheduling,the transmit power allocation,as well as UAV trajectory under the buffer constraint over a given flight period.Actually,the formulated fractional optimization problem is diffi-cult to be solved in general because of non-convexity.To re-solve this difficulty,an efficient iterative algorithm is proposed based on the block coordinate descent(BCD)and successive convex approximation(SCA)techniques,as well as the Dinkel-bach’s algorithm.Specifically,the optimization variables of the formulated problem are divided into three blocks and we alter-nately optimize each block of the variables over iteration.Numeri-cal results verify the convergence of the proposed iterative al-gorithm and show that the proposed designs achieve significant EE gain,which outperform other benchmark schemes.展开更多
The application of Low Density Parity Check (LDPC) code in the anti-interference systems has drawn an increasing attention, due to its admiring performance which is very close to the theory limit. This paper focuses o...The application of Low Density Parity Check (LDPC) code in the anti-interference systems has drawn an increasing attention, due to its admiring performance which is very close to the theory limit. This paper focuses on a LDPC encoded slow frequency hopping (SFH) communication system with partial-band interference. Firstly, a modified soft- decision algorithm based on the utilization of interference information is proposed, and its performance is compared with some other soft-decision methods. Secondly, with numerical simulation, the influence of code rate, code length and the number of symbols per hops on the performance of the system with partial band noise interference is illustrated and examined in detail. Considering the great influence of hops per symbol on the performance, interleaver should be used and its influence on the performance is further examined by simulation. Finally, some constructive advises for the design of LDPC coded SFH system are given. Simulation results show that, with a reasonable design, the SFH system with LDPC code could achieve a desirable performance.展开更多
This paper studies the proactive spec-trum monitoring with one half-duplex spectrum moni-tor(SM)to cope with the potential suspicious wireless powered communications(SWPC)in dynamic spec-trum sharing networks.The jamm...This paper studies the proactive spec-trum monitoring with one half-duplex spectrum moni-tor(SM)to cope with the potential suspicious wireless powered communications(SWPC)in dynamic spec-trum sharing networks.The jamming-assisted spec-trum monitoring scheme via spectrum monitoring data(SMD)transmission is proposed to maximize the sum ergodic monitoring rate at SM.In SWPC,the suspi-cious communications of each data block occupy mul-tiple independent blocks,with a block dedicated to the wireless energy transfer by the energy-constrained suspicious nodes with locations in a same cluster(symmetric scene)or randomly distributed(asymmet-ric scene)and the remaining blocks used for the in-formation transmission from suspicious transmitters(STs)to suspicious destination(SD).For the sym-metric scene,with a given number of blocks for SMD transmission,namely the jamming operation,we first reveal that SM should transmit SMD signal(jam the SD)with tolerable maximum power in the given blocks.The perceived suspicious signal power at SM could be maximized,and thus so does the correspond-ing sum ergodic monitoring rate.Then,we further reveal one fundamental trade-off in deciding the op-timal number of given blocks for SMD transmission.For the asymmetric scene,a low-complexity greedy block selection scheme is proposed to guarantee the optimal performance.Simulation results show that the jamming-assisted spectrum monitoring schemes via SMD transmission achieve much better perfor-mance than conventional passive spectrum monitor-ing,since the proposed schemes can obtain more accu-rate and effective spectrum characteristic parameters,which provide basic support for fine-grained spectrum management and a solution for spectrum security in dynamic spectrum sharing network.展开更多
In multi-agent confrontation scenarios, a jammer is constrained by the single limited performance and inefficiency of practical application. To cope with these issues, this paper aims to investigate the multi-agent ja...In multi-agent confrontation scenarios, a jammer is constrained by the single limited performance and inefficiency of practical application. To cope with these issues, this paper aims to investigate the multi-agent jamming problem in a multi-user scenario, where the coordination between the jammers is considered. Firstly, a multi-agent Markov decision process (MDP) framework is used to model and analyze the multi-agent jamming problem. Secondly, a collaborative multi-agent jamming algorithm (CMJA) based on reinforcement learning is proposed. Finally, an actual intelligent jamming system is designed and built based on software-defined radio (SDR) platform for simulation and platform verification. The simulation and platform verification results show that the proposed CMJA algorithm outperforms the independent Q-learning method and provides a better jamming effect.展开更多
Massive machine type communications(mMTC)have been regarded as promising applications in the future.One main feature of mMTC is short packet communication.Different from traditional long packet communication,short pac...Massive machine type communications(mMTC)have been regarded as promising applications in the future.One main feature of mMTC is short packet communication.Different from traditional long packet communication,short packet communication suffers from transmission rate degradation and a significant error rate is introduced.In this case,traditional resource allocation scheme for mMTC is no longer applicable.In this paper,we explore resource allocation for cellular-based mMTC in the finite blocklength regime.First,to mitigate the load of the base station(BS),we establish a framework for cellularbased mMTC,where MTCGs reuse the resources of cellular users(CUs),aggregate the packets generated by MTCDs,and forward them to the BS.Next,we adopt short packet theory to obtain the minimum required blocklength of a packet that transmits a certain amount of information.Then,by modeling the process of MTCGs-assisted communication as a queuing process,we derive the closed-form expression of the average delay of all MTCDs.Guided by this,we propose a joint power allocation and spectrum sharing scheme to minimize the average delay.Finally,the simulation results verify the correctness of the theoretical results and show that the proposed scheme can reduce the average delay efficiently.展开更多
Due to the broadcast nature of wireless transmission medium,security threats may hinder propagation of cognitive radio systems for commercial and military data application. This paper sets a channel error analytical f...Due to the broadcast nature of wireless transmission medium,security threats may hinder propagation of cognitive radio systems for commercial and military data application. This paper sets a channel error analytical framework and studies the joint impact of estimation errors and feedback delay on secrecy performance in cognitive radio networks. Under the assumption that system applies beamforming and jamming scheme,a multi-antenna cognitive base station( CBS) sends confidential signals to a secondary user( SU) in the presence of M primary users( PUs) and an eavesdropper. Assuming only imperfect channel state information( CSI) about the receivers is available,secrecy rate,outage probability,secrecy throughput are deduced to obtain a closed-form expression. It is shown that while the transmit power increases,secrecy throughput would reach to a constant. Simulation results show that feedback delay adversely impacts on secrecy rate,connection outage probability and secrecy throughput,while estimation error causes more impact on secrecy outage probability. Furthermore,the secrecy rate could increase progressively with the transmit power only if there exists no feedback delay.展开更多
In this paper,we address the problem of multiple frequency-hopping(FH)signal parameters estimation in the presence of random missing observations.A space-time matrix with random missing observations is acquired by a u...In this paper,we address the problem of multiple frequency-hopping(FH)signal parameters estimation in the presence of random missing observations.A space-time matrix with random missing observations is acquired by a uniform linear array(ULA).We exploit the inherent incomplete data processing capability of atomic norm soft thresholding(AST)to analyze the space-time matrix and complete the accurate estimation of the hopping time and frequency of the received FH signals.The hopping time is obtained by the sudden changes of the spatial information,which is implemented as the boundary to divide the time domain signal so that each segment of the signal is a superposition of time-invariant multiple components.Then,the frequency of multiple signal components can be estimated precisely by AST within each segment.After obtaining the above two parameters of the hopping time and the frequency of signals,the direction of arrival(DOA)can be directly calculated by them,and the network sorting can be realized.Results of simulation show that the proposed method is superior to the existing technology.Even when a large portion of data observations is missing,as the number of array elements increases,the proposed method still achieves acceptable accuracy of multi-FH signal parameters estimation.展开更多
This paper investigates the outage performance of a cognitive relay network considering best relay selection in Nakagami-m fading environment. The secondary user is allowed to use the spectrum when it meets the interf...This paper investigates the outage performance of a cognitive relay network considering best relay selection in Nakagami-m fading environment. The secondary user is allowed to use the spectrum when it meets the interference constraints predefined by primary user. Due to deep fading, cognitive source is unable to communicate directly with cognitive destination. As such, multiple relays are ready to deliver the signal from the cognitive source to cognitive destination. We select a single best relay and the selected relay uses decode-and-forward protocol. Specifically, we derive the exact outage probability expression, which provides an efficient means to evaluate the effects of several parameters. Finally, numerical simulation results are presented, which validate the correctness of the analytical analysis.展开更多
In this paper,we investigate the feasibility and performance of the covert communication with a spectrum sharing relay in the finite blocklength regime.Specifically,the relay opportunistically forwards the source'...In this paper,we investigate the feasibility and performance of the covert communication with a spectrum sharing relay in the finite blocklength regime.Specifically,the relay opportunistically forwards the source's messages to the primary receiver or conveys the covert messages to its own receiver via the sharing spectrum,while the warden attempts to detect the transmission.First,we derive a lower bound on the covertness constraint,and the analytical expressions of both the primary average effective covert throughput(AECT)and sum AECT are presented by considering the overall decoding error performance.Then,we formulate two optimization problems to maximize the primary and sum AECT respectively by optimizing the blocklength and the transmit power at the source and the relay.Our examinations show that there exists an optimal blocklength to maximize the primary and sum AECT.Besides,it is revealed that,to maximize the primary AECT,the optimal transmit power of each hop increases as its channel quality deteriorates.Furthermore,in the optimization for maximizing the sum AECT,the optimal transmit power at the source equals to zero when the channel quality from relay to the secondary receiver is not weaker than that from relay to the primary receiver.展开更多
Integrated sensing and communication(ISAC)is regarded as a recent advanced technology,which is expected to realize the dual functions of sensing and communication simultaneously in one system.Nevertheless,it still fac...Integrated sensing and communication(ISAC)is regarded as a recent advanced technology,which is expected to realize the dual functions of sensing and communication simultaneously in one system.Nevertheless,it still faces the challenges of the information security and transmission robustness caused by the openness of wireless channel,especially under antagonistic environment.Hence,this article develops a generalized framework,named cognitive joint jamming,sensing and communication(cognitive J2SAC),to empower the current sensing/communication/jamming system with a“brain”for realizing precise sensing,reliable communication and effective jamming under antagonistic environment.Three kinds of gains can be captured by cognitive J2SAC,including integrated gain,cooperative gain and cognitive gain.Moreover,we highlight the enabling mechanism among jamming,sensing,and communication,as well as illustrating several typical use cases of cognitive J2SAC.Furthermore,several key enabled technologies are analyzed and a typical sensing enhance integrated communication and jamming case study is discussed to verify the effectiveness of the proposed method.Last but not the least,the future directions are listed before concluding this article.Integrated sensing and communication(ISAC)is regarded as a recent advanced technology,which is expected to realize the dual functions of sensing and communication simultaneously in one system.Nevertheless,it still faces the challenges of the information security and transmission robustness caused by the openness of wireless channel,especially under antagonistic environment.Hence,this article develops a generalized framework,named cognitive joint jamming,sensing and communication(cognitive J2SAC),to empower the current sensing/communication/jamming system with a“brain”for realizing precise sensing,reliable communication and effective jamming under antagonistic environment.Three kinds of gains can be captured by cognitive J2SAC,including integrated gain,cooperative gain and cognitive gain.Moreover,we highlight the enabling mechanism among jamming,sensing,and communication,as well as illustrating several typical use cases of cognitive J2SAC.Furthermore,several key enabled technologies are analyzed and a typical sensing enhance integrated communication and jamming case study is discussed to verify the effectiveness of the proposed method.Last but not the least,the future directions are listed before concluding this article.展开更多
文摘In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.
文摘To solve the problem of delayed update of spectrum information(SI) in the database assisted dynamic spectrum management(DB-DSM), this paper studies a novel dynamic update scheme of SI in DB-DSM. Firstly, a dynamic update mechanism of SI based on spectrum opportunity incentive is established, in which spectrum users are encouraged to actively assist the database to update SI in real time. Secondly, the information update contribution(IUC) of spectrum opportunity is defined to describe the cost of accessing spectrum opportunity for heterogeneous spectrum users, and the profit of SI update obtained by the database from spectrum allocation. The process that the database determines the IUC of spectrum opportunity and spectrum user selects spectrum opportunity is mapped to a Hotelling model. Thirdly, the process of determining the IUC of spectrum opportunities is further modelled as a Stackelberg game by establishing multiple virtual spectrum resource providers(VSRPs) in the database. It is proved that there is a Nash Equilibrium in the game of determining the IUC of spectrum opportunities by VSRPs. Finally, an algorithm of determining the IUC based on a genetic algorithm is designed to achieve the optimal IUC. The-oretical analysis and simulation results show that the proposed method can quickly find the optimal solution of the IUC, and ensure that the spectrum resource provider can obtain the optimal profit of SI update.
文摘In this paper,the covert age of information(CAoI),which characterizes the timeliness and covertness performance of communication,is first investigated in the short-packet covert communication with time modulated retrodirective array(TMRDA).Specifically,the TMRDA is designed to maximize the antenna gain in the target direction while the side lobe is sufficiently suppressed.On this basis,the covertness constraint and CAoI are derived in closed form.To facilitate the covert transmission design,the transmit power and block-length are jointly optimized to minimize the CAoI,which demonstrates the trade-off between covertness and timelessness.Our results illustrate that there exists an optimal block-length that yields the minimum CAoI,and the presented optimization results can achieve enhanced performance compared with the fixed block-length case.Additionally,we observe that smaller beam pointing error at Bob leads to improvements in CAoI.
文摘This paper studies a multi-unmanned aerial vehicle(UAV)enabled wireless communication system,where multiple UAVs are employed to communicate with a group of ground terminals(GTs)in the presence of potential jammers.We aim to maximize the throughput overall GTs by jointly optimizing the UAVs’trajectory,the GTs’scheduling and power allocation.Unlike most prior studies,we consider the UAVs’turning and climbing angle constraints,the UAVs’three-dimensional(3D)trajectory constraints,minimum UAV-to-UAV(U2U)distance constraint,and the GTs’transmit power requirements.However,the formulated problem is a mixed-integer non-convex problem and is intractable to work it out with conventional optimization methods.To tackle this difficulty,we propose an efficient robust iterative algorithm to decompose the original problem be three sub-problems and acquire the suboptimal solution via utilizing the block coordinate descent(BCD)method,successive convex approximation(SCA)technique,and S-procedure.Extensive simulation results show that our proposed robust iterative algorithm offers a substantial gain in the system performance compared with the benchmark algorithms.
基金supported by the National Natural Science Foundation of China (61871400)Natural Science Foundation of Jiangsu Province (BK20211227)Scientific Research Project of Liupanshui Normal University (LPSSYYBZK202207).
文摘The traditional multi-access edge computing (MEC) capacity isoverwhelmed by the increasing demand for vehicles, leading to acute degradationin task offloading performance. There is a tremendous number ofresource-rich and idle mobile connected vehicles (CVs) in the traffic network,and vehicles are created as opportunistic ad-hoc edge clouds to alleviatethe resource limitation of MEC by providing opportunistic computing services.On this basis, a novel scalable system framework is proposed in thispaper for computation task offloading in opportunistic CV-assisted MEC.In this framework, opportunistic ad-hoc edge cloud and fixed edge cloudcooperate to form a novel hybrid cloud. Meanwhile, offloading decision andresource allocation of the user CVs must be ascertained. Furthermore, thejoint offloading decision and resource allocation problem is described asa Mixed Integer Nonlinear Programming (MINLP) problem, which optimizesthe task response latency of user CVs under various constraints. Theoriginal problem is decomposed into two subproblems. First, the Lagrangedual method is used to acquire the best resource allocation with the fixedoffloading decision. Then, the satisfaction-driven method based on trial anderror (TE) learning is adopted to optimize the offloading decision. Finally, acomprehensive series of experiments are conducted to demonstrate that oursuggested scheme is more effective than other comparison schemes.
基金supported by the National Natural Science Foundation of China under Grant 62171465。
文摘Many efforts have been devoted to efficient task scheduling in Multi-Unmanned Aerial Vehicle(UAV)edge computing.However,the heterogeneity of UAV computation resource,and the task re-allocating between UAVs have not been fully considered yet.Moreover,most existing works neglect the fact that a task can only be executed on the UAV equipped with its desired service function(SF).In this backdrop,this paper formulates the task scheduling problem as a multi-objective task scheduling problem,which aims at maximizing the task execution success ratio while minimizing the average weighted sum of all tasks’completion time and energy consumption.Optimizing three coupled goals in a realtime manner with the dynamic arrival of tasks hinders us from adopting existing methods,like machine learning-based solutions that require a long training time and tremendous pre-knowledge about the task arrival process,or heuristic-based ones that usually incur a long decision-making time.To tackle this problem in a distributed manner,we establish a matching theory framework,in which three conflicting goals are treated as the preferences of tasks,SFs and UAVs.Then,a Distributed Matching Theory-based Re-allocating(DiMaToRe)algorithm is put forward.We formally proved that a stable matching can be achieved by our proposal.Extensive simulation results show that Di Ma To Re algorithm outperforms benchmark algorithms under diverse parameter settings and has good robustness.
基金supported by the National Natural Science Foundation of China(No.61871400)the Natural Science Foundation of the Jiangsu Province of China(No.BK20171401)。
文摘In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and transmission.Existing methods often rely on prior information such as low-rank characteristics or spatiotemporal correlation when recovering missing WSNs data.However,in realistic application scenarios,it is very difficult to obtain these prior information from incomplete data sets.Therefore,we aim to recover the missing WSNs data effectively while getting rid of the perplexity of prior information.By designing the corresponding measurement matrix that can capture the position of missing data and sparse representation matrix,a compressive sensing(CS)based missing data recovery model is established.Then,we design a comparison standard to select the best sparse representation basis and introduce average cross-correlation to examine the rationality of the established model.Furthermore,an improved fast matching pursuit algorithm is proposed to solve the model.Simulation results show that the proposed method can effectively recover the missing WSNs data.
基金supported in part by the National Natural Science Foundation of China under Grant 62171465,62072303,62272223,U22A2031。
文摘By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC.
基金supported by the National Natural Science Foundation of China(No.61871398,No.61501510,and No.61631020)China Postdoctoral Science Foundation Funded Project(No.2018T110426)Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province under Grant(No.BK20160034)
文摘This article explores the use of network-connected unmanned aerial vehicle(UAV) communications as a compelling solution to achieve high-rate information transmission and support ultra-reliable UAV remote command and control. We first discuss the use cases of UAVs and the resulting communication requirements, accompanied with a flexible architecture for network-connected UAV communications. Then, the signal transmission and interference characteristics are theoretically analyzed, and subsequently we highlight the design and optimization considerations, including antenna design, nonorthogonal multiple access communications, as well as network selection and association optimization. Finally, case studies are provided to show the feasibility of network-connected UAV communications.
基金supported by the National Natural Science Foundation of China (Grant No. 61501510)Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province (Grant No. BK20160034)+1 种基金Natural Science Foundation of Jiangsu Province (Grant No. BK20150717)China Postdoctoral Science Funded Project (Grant No. 2018T110426)
文摘High frequency(HF) communication, commonly covering frequency range between 3 and 30 MHz, is an important wireless communication paradigm to offer over-thehorizon or even global communications with ranges up to thousands of kilometers via skywave propagation with ionospheric refraction. It has widespread applications in fields such as emergency communications in disaster areas, remote communications with aircrafts or ships and non-light-of-the-sight military operations. This tutorial article overviews the history of HF communication, demystifies the recent advances, and provides a preview of the next few years, which the authors believe will see fruitful outputs towards wideband, intelligent and integrated HF communications. Specifically, we first present brief preliminaries on the unique features of HF communications to facilitate general readers in the communication community. Then, we provide a historical review to show the technical evolution on the three generations of HF communication systems. Further, we highlight the key challenges and research directions. We hope that this article will stimulate more interests in addressing the technical challenges on the research and development of future HF radio communication systems.
基金supported by the National Natural Science Foundation of China(61671474).
文摘This paper studies a multiple unmanned aerial vehicle(UAV)relaying communication system,where multiple UAV re-lays assist the blocked communication between a group of ground users(GUs)and a base station(BS).Since the UAVs only have limited-energy in practice,our design aims to maximize the energy efficiency(EE)through jointly designing the communica-tion scheduling,the transmit power allocation,as well as UAV trajectory under the buffer constraint over a given flight period.Actually,the formulated fractional optimization problem is diffi-cult to be solved in general because of non-convexity.To re-solve this difficulty,an efficient iterative algorithm is proposed based on the block coordinate descent(BCD)and successive convex approximation(SCA)techniques,as well as the Dinkel-bach’s algorithm.Specifically,the optimization variables of the formulated problem are divided into three blocks and we alter-nately optimize each block of the variables over iteration.Numeri-cal results verify the convergence of the proposed iterative al-gorithm and show that the proposed designs achieve significant EE gain,which outperform other benchmark schemes.
文摘The application of Low Density Parity Check (LDPC) code in the anti-interference systems has drawn an increasing attention, due to its admiring performance which is very close to the theory limit. This paper focuses on a LDPC encoded slow frequency hopping (SFH) communication system with partial-band interference. Firstly, a modified soft- decision algorithm based on the utilization of interference information is proposed, and its performance is compared with some other soft-decision methods. Secondly, with numerical simulation, the influence of code rate, code length and the number of symbols per hops on the performance of the system with partial band noise interference is illustrated and examined in detail. Considering the great influence of hops per symbol on the performance, interleaver should be used and its influence on the performance is further examined by simulation. Finally, some constructive advises for the design of LDPC coded SFH system are given. Simulation results show that, with a reasonable design, the SFH system with LDPC code could achieve a desirable performance.
基金the Natural Science Foun-dations of China(No.62171464,61771487)the Defense Science Foundation of China(No.2019-JCJQ-JJ-221).
文摘This paper studies the proactive spec-trum monitoring with one half-duplex spectrum moni-tor(SM)to cope with the potential suspicious wireless powered communications(SWPC)in dynamic spec-trum sharing networks.The jamming-assisted spec-trum monitoring scheme via spectrum monitoring data(SMD)transmission is proposed to maximize the sum ergodic monitoring rate at SM.In SWPC,the suspi-cious communications of each data block occupy mul-tiple independent blocks,with a block dedicated to the wireless energy transfer by the energy-constrained suspicious nodes with locations in a same cluster(symmetric scene)or randomly distributed(asymmet-ric scene)and the remaining blocks used for the in-formation transmission from suspicious transmitters(STs)to suspicious destination(SD).For the sym-metric scene,with a given number of blocks for SMD transmission,namely the jamming operation,we first reveal that SM should transmit SMD signal(jam the SD)with tolerable maximum power in the given blocks.The perceived suspicious signal power at SM could be maximized,and thus so does the correspond-ing sum ergodic monitoring rate.Then,we further reveal one fundamental trade-off in deciding the op-timal number of given blocks for SMD transmission.For the asymmetric scene,a low-complexity greedy block selection scheme is proposed to guarantee the optimal performance.Simulation results show that the jamming-assisted spectrum monitoring schemes via SMD transmission achieve much better perfor-mance than conventional passive spectrum monitor-ing,since the proposed schemes can obtain more accu-rate and effective spectrum characteristic parameters,which provide basic support for fine-grained spectrum management and a solution for spectrum security in dynamic spectrum sharing network.
基金supported by National Natural Science Foundation of China (No. 62071488 and No. 62061013)
文摘In multi-agent confrontation scenarios, a jammer is constrained by the single limited performance and inefficiency of practical application. To cope with these issues, this paper aims to investigate the multi-agent jamming problem in a multi-user scenario, where the coordination between the jammers is considered. Firstly, a multi-agent Markov decision process (MDP) framework is used to model and analyze the multi-agent jamming problem. Secondly, a collaborative multi-agent jamming algorithm (CMJA) based on reinforcement learning is proposed. Finally, an actual intelligent jamming system is designed and built based on software-defined radio (SDR) platform for simulation and platform verification. The simulation and platform verification results show that the proposed CMJA algorithm outperforms the independent Q-learning method and provides a better jamming effect.
基金supported by the Jiangsu Provincial Natural Science Fund for Outstanding Young Scholars(No.BK20180028)the Natural Science Foundations of China(No.61671474,No.61771487)the Jiangsu Provincial Natural Science Fund for Excellent Young Scholars(No.BK20170089).
文摘Massive machine type communications(mMTC)have been regarded as promising applications in the future.One main feature of mMTC is short packet communication.Different from traditional long packet communication,short packet communication suffers from transmission rate degradation and a significant error rate is introduced.In this case,traditional resource allocation scheme for mMTC is no longer applicable.In this paper,we explore resource allocation for cellular-based mMTC in the finite blocklength regime.First,to mitigate the load of the base station(BS),we establish a framework for cellularbased mMTC,where MTCGs reuse the resources of cellular users(CUs),aggregate the packets generated by MTCDs,and forward them to the BS.Next,we adopt short packet theory to obtain the minimum required blocklength of a packet that transmits a certain amount of information.Then,by modeling the process of MTCGs-assisted communication as a queuing process,we derive the closed-form expression of the average delay of all MTCDs.Guided by this,we propose a joint power allocation and spectrum sharing scheme to minimize the average delay.Finally,the simulation results verify the correctness of the theoretical results and show that the proposed scheme can reduce the average delay efficiently.
基金Supported by the National Natural Science Foundation of China(No.61371122,61471393)the China Postdoctoral Science Foundation under a Special Financial Grant(No.2013T60912)
文摘Due to the broadcast nature of wireless transmission medium,security threats may hinder propagation of cognitive radio systems for commercial and military data application. This paper sets a channel error analytical framework and studies the joint impact of estimation errors and feedback delay on secrecy performance in cognitive radio networks. Under the assumption that system applies beamforming and jamming scheme,a multi-antenna cognitive base station( CBS) sends confidential signals to a secondary user( SU) in the presence of M primary users( PUs) and an eavesdropper. Assuming only imperfect channel state information( CSI) about the receivers is available,secrecy rate,outage probability,secrecy throughput are deduced to obtain a closed-form expression. It is shown that while the transmit power increases,secrecy throughput would reach to a constant. Simulation results show that feedback delay adversely impacts on secrecy rate,connection outage probability and secrecy throughput,while estimation error causes more impact on secrecy outage probability. Furthermore,the secrecy rate could increase progressively with the transmit power only if there exists no feedback delay.
文摘In this paper,we address the problem of multiple frequency-hopping(FH)signal parameters estimation in the presence of random missing observations.A space-time matrix with random missing observations is acquired by a uniform linear array(ULA).We exploit the inherent incomplete data processing capability of atomic norm soft thresholding(AST)to analyze the space-time matrix and complete the accurate estimation of the hopping time and frequency of the received FH signals.The hopping time is obtained by the sudden changes of the spatial information,which is implemented as the boundary to divide the time domain signal so that each segment of the signal is a superposition of time-invariant multiple components.Then,the frequency of multiple signal components can be estimated precisely by AST within each segment.After obtaining the above two parameters of the hopping time and the frequency of signals,the direction of arrival(DOA)can be directly calculated by them,and the network sorting can be realized.Results of simulation show that the proposed method is superior to the existing technology.Even when a large portion of data observations is missing,as the number of array elements increases,the proposed method still achieves acceptable accuracy of multi-FH signal parameters estimation.
文摘This paper investigates the outage performance of a cognitive relay network considering best relay selection in Nakagami-m fading environment. The secondary user is allowed to use the spectrum when it meets the interference constraints predefined by primary user. Due to deep fading, cognitive source is unable to communicate directly with cognitive destination. As such, multiple relays are ready to deliver the signal from the cognitive source to cognitive destination. We select a single best relay and the selected relay uses decode-and-forward protocol. Specifically, we derive the exact outage probability expression, which provides an efficient means to evaluate the effects of several parameters. Finally, numerical simulation results are presented, which validate the correctness of the analytical analysis.
基金supported by National Natural Science Foundation of China(No.62071486)Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu Province,China(BK20212001)Key Research and Development Program of Jiangsu Province Key Project and Topics,China(2019B010157001)。
文摘In this paper,we investigate the feasibility and performance of the covert communication with a spectrum sharing relay in the finite blocklength regime.Specifically,the relay opportunistically forwards the source's messages to the primary receiver or conveys the covert messages to its own receiver via the sharing spectrum,while the warden attempts to detect the transmission.First,we derive a lower bound on the covertness constraint,and the analytical expressions of both the primary average effective covert throughput(AECT)and sum AECT are presented by considering the overall decoding error performance.Then,we formulate two optimization problems to maximize the primary and sum AECT respectively by optimizing the blocklength and the transmit power at the source and the relay.Our examinations show that there exists an optimal blocklength to maximize the primary and sum AECT.Besides,it is revealed that,to maximize the primary AECT,the optimal transmit power of each hop increases as its channel quality deteriorates.Furthermore,in the optimization for maximizing the sum AECT,the optimal transmit power at the source equals to zero when the channel quality from relay to the secondary receiver is not weaker than that from relay to the primary receiver.
基金the National Natural Science Foundation of China(No.62171462,No.62231027,No.U20B2038,No.61931011,No.62001514 and No.62271501).
文摘Integrated sensing and communication(ISAC)is regarded as a recent advanced technology,which is expected to realize the dual functions of sensing and communication simultaneously in one system.Nevertheless,it still faces the challenges of the information security and transmission robustness caused by the openness of wireless channel,especially under antagonistic environment.Hence,this article develops a generalized framework,named cognitive joint jamming,sensing and communication(cognitive J2SAC),to empower the current sensing/communication/jamming system with a“brain”for realizing precise sensing,reliable communication and effective jamming under antagonistic environment.Three kinds of gains can be captured by cognitive J2SAC,including integrated gain,cooperative gain and cognitive gain.Moreover,we highlight the enabling mechanism among jamming,sensing,and communication,as well as illustrating several typical use cases of cognitive J2SAC.Furthermore,several key enabled technologies are analyzed and a typical sensing enhance integrated communication and jamming case study is discussed to verify the effectiveness of the proposed method.Last but not the least,the future directions are listed before concluding this article.Integrated sensing and communication(ISAC)is regarded as a recent advanced technology,which is expected to realize the dual functions of sensing and communication simultaneously in one system.Nevertheless,it still faces the challenges of the information security and transmission robustness caused by the openness of wireless channel,especially under antagonistic environment.Hence,this article develops a generalized framework,named cognitive joint jamming,sensing and communication(cognitive J2SAC),to empower the current sensing/communication/jamming system with a“brain”for realizing precise sensing,reliable communication and effective jamming under antagonistic environment.Three kinds of gains can be captured by cognitive J2SAC,including integrated gain,cooperative gain and cognitive gain.Moreover,we highlight the enabling mechanism among jamming,sensing,and communication,as well as illustrating several typical use cases of cognitive J2SAC.Furthermore,several key enabled technologies are analyzed and a typical sensing enhance integrated communication and jamming case study is discussed to verify the effectiveness of the proposed method.Last but not the least,the future directions are listed before concluding this article.